(\’}AWILEY =\ TIMELY. PRACTICAL. RELIABLE.

Building
the Data
Wareh

Third Edition

Building the
Data Warehouse

Third Edition

W. H. Inmon

Wiley Computer Publishing

John Wiley & Sons, Inc.
NEW YORK + CHICHESTER + WEINHEIM + BRISBANE + SINGAPORE + TORONTO

Building the
Data Warehouse

Third Edition

Building the
Data Warehouse

Third Edition

W. H. Inmon

Wiley Computer Publishing

John Wiley & Sons, Inc.
NEW YORK + CHICHESTER + WEINHEIM + BRISBANE + SINGAPORE + TORONTO

Publisher: Robert Ipsen

Editor: Robert Elliott

Developmental Editor: Emilie Herman

Managing Editor: John Atkins

Text Design & Composition: MacAllister Publishing Services, LLC

Designations used by companies to distinguish their products are often claimed as trademarks. In all
instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial cap-
ital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for more com-
plete information regarding trademarks and registration.

This book is printed on acid-free paper.

Copyright © 2002 by W.H. Inmon. All rights reserved.
Published by John Wiley & Sons, Inc.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
750-4744. Requests to the Publisher for permission should be addressed to the Permissions Depart-
ment, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212)
850-6008, E-Mail: PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold with the understanding that the publisher is not engaged in professional ser-
vices. If professional advice or other expert assistance is required, the services of a competent pro-
fessional person should be sought.

Library of Congress Cataloging-in-Publication Data:
ISBN: 0-471-08130-2

Printed in the United States of America.

10987654321

To Jeanne Friedman—a friend for all times

Preface for the Second Edition
Preface for the Third Edition
Acknowledgments

About the Author

Chapter 1

Chapter 2

Evolution of Decision Support Systems

The Evolution
The Advent of DASD
PC/4AGL Technology
Enter the Extract Program
The Spider Web

Problems with the Naturally Evolving Architecture
Lack of Data Credibility
Problems with Productivity
From Data to Information
A Change in Approach

The Architected Environment
Data Integration in the Architected Environment

Who Is the User?

The Development Life Cycle

Patterns of Hardware Utilization

Setting the Stage for Reengineering
Monitoring the Data Warehouse Environment
Summary

The Data Warehouse Environment
The Structure of the Data Warehouse
Subject Orientation

Day 1-Day n Phenomenon

Granularity
The Benefits of Granularity
An Example of Granularity
Dual Levels of Granularity

xiii

xiv
xix

XX

O© SO U DN -

viii

Chapter 3

Exploration and Data Mining
Living Sample Database

Partitioning as a Design Approach
Partitioning of Data

Structuring Data in the Data Warehouse
Data Warehouse: The Standards Manual
Auditing and the Data Warehouse

Cost Justification
Justifying Your Data Warehouse

Data Homogeneity/Heterogeneity

Purging Warehouse Data

Reporting and the Architected Environment
The Operational Window of Opportunity
Incorrect Data in the Data Warehouse
Summary

The Data Warehouse and Design
Beginning with Operational Data
Data/Process Models and the Architected Environment

The Data Warehouse and Data Models
The Data Warehouse Data Model
The Midlevel Data Model
The Physical Data Model

The Data Model and Iterative Development

Normalization/Denormalization
Snapshots in the Data Warehouse

Meta Data
Managing Reference Tables in a Data Warehouse

Cyclicity of Data-The Wrinkle of Time
Complexity of Transformation and Integration

Triggering the Data Warehouse Record
Events
Components of the Snapshot
Some Examples

Profile Records
Managing Volume

Creating Multiple Profile Records

53
53

55
56

59
64
64

65
66

69
72
73
74
76
7

81
82
87

89
92
94
98

102

102
110

113
113

115
118

122
122
123
123

124
126
127

Chapter 4

Chapter 5

Going from the Data Warehouse to the Operational
Environment

Direct Access of Data Warehouse Data

Indirect Access of Data Warehouse Data
An Airline Commission Calculation System
A Retail Personalization System
Credit Scoring

Indirect Use of Data Warehouse Data
Star Joins
Supporting the ODS

Summary

Granularity in the Data Warehouse
Raw Estimates
Input to the Planning Process

Data in Overflow?
Overflow Storage

What the Levels of Granularity Will Be
Some Feedback Loop Techniques

Levels of Granularity-Banking Environment
Summary

The Data Warehouse and Technology

Managing Large Amounts of Data

Managing Multiple Media

Index/Monitor Data

Interfaces to Many Technologies
Programmer/Designer Control of Data Placement

Parallel Storage/Management of Data
Meta Data Management

Language Interface
Efficient Loading of Data
Efficient Index Utilization
Compaction of Data
Compound Keys
Variable-Length Data
Lock Management

ix

128
129

130
130
132
133

136
137
143
145

147
148
149

149
151

155
156
158
165

167
167
169
169
170
171

171
171

173
173
175
175
176
176
176

Chapter 6

Chapter 7

Index-Only Processing

Fast Restore

Other Technological Features

DBMS Types and the Data Warehouse

Changing DBMS Technology

Multidimensional DBMS and the Data Warehouse
Data Warehousing across Multiple Storage Media
Meta Data in the Data Warehouse Environment

Context and Content
Three Types of Contextual Information

Capturing and Managing Contextual Information
Looking at the Past

Refreshing the Data Warehouse
Testing
Summary

The Distributed Data Warehouse

Types of Distributed Data Warehouses
Local and Global Data Warehouses
The Technologically Distributed Data Warehouse
The Independently Evolving Distributed Data Warehouse

The Nature of the Development Efforts
Completely Unrelated Warehouses

Distributed Data Warehouse Development
Coordinating Development across Distributed Locations
The Corporate Data Model-Distributed
Meta Data in the Distributed Warehouse

Building the Warehouse on Multiple Levels

Multiple Groups Building the Current Level of Detail
Different Requirements at Different Levels
Other Types of Detailed Data
Meta Data

Multiple Platforms for Common Detail Data
Summary

Executive Information Systems and the Data Warehouse

EIS-The Promise
A Simple Example
Drill-Down Analysis

178
178
178
179
181
182
188
189

192
193

194
195

195
198
198

201

202
202
220
221

222
224

226
227
228
232

232

235
238
239
244

244
245

247
248
248
251

Chapter 8

Chapter 9

Chapter 10

Supporting the Drill-Down Process
The Data Warehouse as a Basis for EIS
Where to Turn

Event Mapping

Detailed Data and EIS
Keeping Only Summary Data in the EIS

Summary

External/Unstructured Data and the Data Warehouse

External/Unstructured Data in the Data Warehouse
Meta Data and External Data
Storing External/Unstructured Data

Different Components of External/Unstructured Data

Modeling and External/Unstructured Data
Secondary Reports

Archiving External Data

Comparing Internal Data to External Data

Summary

Migration to the Architected Environment
A Migration Plan

The Feedback Loop

Strategic Considerations

Methodology and Migration

A Data-Driven Development Methodology
Data-Driven Methodology

System Development Life Cycles

A Philosophical Observation

Operational Development/DSS Development

Summary

The Data Warehouse and the Web

Supporting the Ebusiness Environment

Moving Data from the Web to the Data Warehouse
Moving Data from the Data Warehouse to the Web
Web Support

Summary

xi

253
254
256
258

261
262

263

265
268
269
271
272
273
274
275
275
276

277
278
286
287
289
291
293
294
294
294
295

297
307
307
308
309
310

Xn

Chapter 11

Chapter 12

Appendix
Glossary
Reference

Index

ERP and the Data Warehouse
ERP Applications Outside the Data Warehouse
Building the Data Warehouse inside the ERP Environment

Feeding the Data Warehouse through ERP and Non-ERP
Systems

The ERP-Oriented Corporate Data Warehouse
Summary

Data Warehouse Design Review Checklist

When to Do Design Review
Who Should Be in the Design Review?
What Should the Agenda Be?
The Results
Administering the Review
A Typical Data Warehouse Design Review

Summary

311
312
314

314
318
320

321

322
323
323
323
324
324

342
343
385
397

407

Databases and database theory have been around for a long time. Early rendi-
tions of databases centered around a single database serving every purpose
known to the information processing community—from transaction to batch
processing to analytical processing. In most cases, the primary focus of the
early database systems was operational—usually transactional—processing. In
recent years, a more sophisticated notion of the database has emerged—one
that serves operational needs and another that serves informational or analyti-
cal needs. To some extent, this more enlightened notion of the database is due
to the advent of PCs, 4GL technology, and the empowerment of the end user.

The split of operational and informational databases occurs for many reasons:

m The data serving operational needs is physically different data from that
serving informational or analytic needs.

m The supporting technology for operational processing is fundamentally dif-
ferent from the technology used to support informational or analytical
needs.

m The user community for operational data is different from the one served
by informational or analytical data.

m The processing characteristics for the operational environment and the
informational environment are fundamentally different.

Because of these reasons (and many more), the modern way to build systems is
to separate the operational from the informational or analytical processing and
data.

This book is about the analytical [or the decision support systems (DSS)] envi-
ronment and the structuring of data in that environment. The focus of the book
is on what is termed the “data warehouse” (or “information warehouse”), which
is at the heart of informational, DSS processing.

The discussions in this book are geared to the manager and the developer.
Where appropriate, some level of discussion will be at the technical level. But,
for the most part, the book is about issues and techniques. This book is meant
to serve as a guideline for the designer and the developer.

xiii

xiv

When the first edition of Building the Data Warehouse was printed, the data-
base theorists scoffed at the notion of the data warehouse. One theoretician
stated that data warehousing set back the information technology industry 20
years. Another stated that the founder of data warehousing should not be
allowed to speak in public. And yet another academic proclaimed that data
warehousing was nothing new and that the world of academia had known
about data warehousing all along although there were no books, no articles, no
classes, no seminars, no conferences, no presentations, no references, no
papers, and no use of the terms or concepts in existence in academia at that
time.

When the second edition of the book appeared, the world was mad for anything
of the Internet. In order to be successful it had to be “e” something—e-business,
e-commerce, e-tailing, and so forth. One venture capitalist was known to say,
“Why do we need a data warehouse when we have the Internet?”

But data warehousing has surpassed the database theoreticians who wanted to
put all data in a single database. Data warehousing survived the dot.com disas-
ter brought on by the short-sighted venture capitalists. In an age when technol-
ogy in general is spurned by Wall Street and Main Street, data warehousing has
never been more alive or stronger. There are conferences, seminars, books,
articles, consulting, and the like. But mostly there are companies doing data
warehousing, and making the discovery that, unlike the overhyped New Econ-
omy, the data warehouse actually delivers, even though Silicon Valley is still in
a state of denial.

The third edition of this book heralds a newer and even stronger day for data
warehousing. Today data warehousing is not a theory but a fact of life. New
technology is right around the corner to support some of the more exotic needs
of a data warehouse. Corporations are running major pieces of their business
on data warehouses. The cost of information has dropped dramatically because
of data warehouses. Managers at long last have a viable solution to the ugliness
of the legacy systems environment. For the first time, a corporate “memory” of
historical information is available. Integration of data across the corporation is
areal possibility, in most cases for the first time. Corporations are learning how

Preface for the Third Edition XV

to go from data to information to competitive advantage. In short, data ware-
housing has unlocked a world of possibility.

One confusing aspect of data warehousing is that it is an architecture, not a
technology. This frustrates the technician and the venture capitalist alike
because these people want to buy something in a nice clean box. But data ware-
housing simply does not lend itself to being “boxed up.” The difference between
an architecture and a technology is like the difference between Santa Fe, New
Mexico, and adobe bricks. If you drive the streets of Santa Fe you know you are
there and nowhere else. Each home, each office building, each restaurant has a
distinctive look that says “This is Santa Fe.” The look and style that make Santa
Fe distinctive are the architecture. Now, that architecture is made up of such
things as adobe bricks and exposed beams. There is a whole art to the making
of adobe bricks and exposed beams. And it is certainly true that you could not
have Santa Fe architecture without having adobe bricks and exposed beams.
But adobe bricks and exposed beams by themselves do not make an architec-
ture. They are independent technologies. For example, you have adobe bricks
throughout the Southwest and the rest of the world that are not Santa Fe
architecture.

Thus it is with architecture and technology, and with data warehousing and
databases and other technology. There is the architecture, then there is the
underlying technology, and they are two very different things. Unquestionably,
there is a relationship between data warehousing and database technology, but
they are most certainly not the same. Data warehousing requires the support of
many different kinds of technology.

With the third edition of this book, we now know what works and what does
not. When the first edition was written, there was some experience with devel-
oping and using warehouses, but truthfully, there was not the broad base of
experience that exists today. For example, today we know with certainty the
following:

m Data warehouses are built under a different development methodology
than applications. Not keeping this in mind is a recipe for disaster.

m Data warehouses are fundamentally different from data marts. The two do
not mix—they are like oil and water.

m Data warehouses deliver on their promise, unlike many overhyped tech-
nologies that simply faded away.

m Data warehouses attract huge amounts of data, to the point that entirely
new approaches to the management of large amounts of data are required.

But perhaps the most intriguing thing that has been learned about data ware-
housing is that data warehouses form a foundation for many other forms of

xvi

Preface for the Third Edition

processing. The granular data found in the data warehouse can be reshaped and
reused. If there is any immutable and profound truth about data warehouses, it
is that data warehouses provide an ideal foundation for many other forms of
information processing. There are a whole host of reasons why this foundation
is so important:

m There is a single version of the truth.
m Data can be reconciled if necessary.

m Data is immediately available for new, unknown uses.

And, finally, data warehousing has lowered the cost of information in the orga-
nization. With data warehousing, data is inexpensive to get to and fast to
access.

Databases and database theory have been around for a long time. Early rendi-
tions of databases centered around a single database serving every purpose
known to the information processing community—from transaction to batch
processing to analytical processing. In most cases, the primary focus of the
early database systems was operational—usually transactional—processing. In
recent years, a more sophisticated notion of the database has emerged—one
that serves operational needs and another that serves informational or analyti-
cal needs. To some extent, this more enlightened notion of the database is due
to the advent of PCs, 4GL technology, and the empowerment of the end user.

The split of operational and informational databases occurs for many reasons:

m The data serving operational needs is physically different data from that
serving informational or analytic needs.

m The supporting technology for operational processing is fundamentally dif-
ferent from the technology used to support informational or analytical
needs.

m The user community for operational data is different from the one served
by informational or analytical data.

m The processing characteristics for the operational environment and the
informational environment are fundamentally different.

For these reasons (and many more), the modern way to build systems is to sep-
arate the operational from the informational or analytical processing and data.

This book is about the analytical or the DSS environment and the structuring of
data in that environment. The focus of the book is on what is termed the data
warehouse (or information warehouse), which is at the heart of informational,
DSS processing.

What is analytical, informational processing? It is processing that serves the
needs of management in the decision-making process. Often known as DSS pro-

Preface for the Third Edition xvii

cessing, analytical processing looks across broad vistas of data to detect
trends. Instead of looking at one or two records of data (as is the case in oper-
ational processing), when the DSS analyst does analytical processing, many
records are accessed.

It is rare for the DSS analyst to update data. In operational systems, data is con-
stantly being updated at the individual record level. In analytical processing,
records are constantly being accessed, and their contents are gathered for
analysis, but little or no alteration of individual records occurs.

In analytical processing, the response time requirements are greatly relaxed
compared to those of traditional operational processing. Analytical response
time is measured from 30 minutes to 24 hours. Response times measured in this
range for operational processing would be an unmitigated disaster.

The network that serves the analytical community is much smaller than the one
that serves the operational community. Usually there are far fewer users of the
analytical network than of the operational network.

Unlike the technology that serves the analytical environment, operational envi-
ronment technology must concern itself with data and transaction locking, con-
tention for data, deadlock, and so on.

There are, then, many major differences between the operational environment
and the analytical environment. This book is about the analytical, DSS environ-
ment and addresses the following issues:

Granularity of data

Partitioning of data

Meta data

Lack of credibility of data

Integration of DSS data

The time basis of DSS data

Identifying the source of DSS data-the system of record

Migration and methodology

This book is for developers, managers, designers, data administrators, database
administrators, and others who are building systems in a modern data process-
ing environment. In addition, students of information processing will find this
book useful. Where appropriate, some discussions will be more technical. But,
for the most part, the book is about issues and techniques, and it is meant to
serve as a guideline for the designer and the developer.

xviii

Preface for the Third Edition

This book is the first in a series of books relating to data warehouse. The next
book in the series is Using the Data Warehouse (Wiley, 1994). Using the Data
Warehouse addresses the issues that arise once you have built the data ware-
house. In addition, Using the Data Warehouse introduces the concept of a
larger architecture and the notion of an operational data store (ODS). An oper-
ational data store is a similar architectural construct to the data warehouse,
except the ODS applies only to operational systems, not informational systems.
The third book in the series is Building the Operational Data Store (Wiley,
1999), which addresses the issues of what an ODS is and how an ODS is built.

The next book in the series is Corporate Information Factory, Third Edition
(Wiley, 2002). This book addresses the larger framework of which the data
warehouse is the center. In many regards the CIF book and the DW book are
companions. The CIF book provides the larger picture and the DW book
provides a more focused discussion. Another related book is Exploration
Warehousing (Wiley, 2000). This book addresses a specialized kind of process-
ing-pattern analysis using statistical techniques on data found in the data
warehouse.

Building the Data Warehouse, however, is the cornerstone of all the related
books. The data warehouse forms the foundation of all other forms of DSS
processing.

There is perhaps no more eloquent testimony to the advances made by data
warehousing and the corporate information factory than the References at the
back of this book. When the first edition was published, there were no other
books, no white papers, and only a handful of articles that could be referenced.
In this third edition, there are many books, articles, and white papers that are
mentioned. Indeed the references only start to explore some of the more impor-
tant works.

The following people have influenced—directly and indirectly—the material
found in this book. The author is grateful for the long-term relationships that
have been formed and for the experiences that have provided a basis for
learning.

Claudia Imhoff, Intelligent Solutions
Jon Geiger, Intelligent Solutions

Joyce Norris Montanari, Intelligent Solutions
John Zachman, Zachman International
John Ladley, Meta Group

Bob Terdeman, EMC Corporation

Dan Meers, Billlnmon.com

Cheryl Estep, independent consultant
Lowell Fryman, independent consultant
David Fender, SAS Japan

Jim Davis, SAS

Peter Grendel, SAP

Allen Houpt, CA

xix

Bill Inmon, the father of the data warehouse concept, has written 40 books on
data management, data warehouse, design review, and management of data
processing. Bill has had his books translated into Russian, German, French,
Japanese, Portuguese, Chinese, Korean, and Dutch. Bill has published more
than 250 articles in many trade journals. Bill founded and took public Prism
Solutions. His latest company—Pine Cone Systems—builds software for the
management of the data warehouse/data mart environment. Bill holds two soft-
ware patents. Articles, white papers, presentations, and much more material
can be found on his Web site, www.billinmon.com.

CHAPTER

Evolution of Decisi
Support Systems

tant declaring how much grain is owed the Pharaoh. Some of the streets in
Rome were laid out by civil engineers more than 2,000 years ago. Examina-
tion of bones found in archeological excavations shows that medicine—in, at
least, a rudimentary form—was practiced as long as 10,000 years ago. Other
professions have roots that can be traced back to antiquity. From this per-
spective, the profession and practice of information systems and processing
is certainly immature, because it has existed only since the early 1960s.

W e are told that the hieroglyphics in Egypt are primarily the work of an accoun-

Information processing shows this immaturity in many ways, such as its ten-
dency to dwell on detail. There is the notion that if we get the details right, the
end result will somehow take care of itself and we will achieve success. It's
like saying that if we know how to lay concrete, how to drill, and how to
install nuts and bolts, we don’t have to worry about the shape or the use of the
bridge we are building. Such an attitude would drive a more professionally
mature civil engineer crazy. Getting all the details right does not necessarily
bring more success.

The data warehouse requires an architecture that begins by looking at the
whole and then works down to the particulars. Certainly, details are impor-
tant throughout the data warehouse. But details are important only when
viewed in a broader context.

(Bl CHAPTERGT

The story of the data warehouse begins with the evolution of information and
decision support systems. This broad view should help put data warehousing
into clearer perspective.

The Evolution

The origins of DSS processing hark back to the very early days of computers
and information systems. It is interesting that decision support system (DSS)
processing developed out of a long and complex evolution of information tech-
nology. Its evolution continues today.

Figure 1.1 shows the evolution of information processing from the early 1960s
up to 1980. In the early 1960s, the world of computation consisted of creating
individual applications that were run using master files. The applications fea-
tured reports and programs, usually built in COBOL. Punched cards were com-
mon. The master files were housed on magnetic tape, which were good for
storing a large volume of data cheaply, but the drawback was that they had to
be accessed sequentially. In a given pass of a magnetic tape file, where 100 per-
cent of the records have to be accessed, typically only 5 percent or fewer of the
records are actually needed. In addition, accessing an entire tape file may take
as long as 20 to 30 minutes, depending on the data on the file and the process-
ing that is done.

Around the mid-1960s, the growth of master files and magnetic tape exploded.
And with that growth came huge amounts of redundant data. The proliferation
of master files and redundant data presented some very insidious problems:

m The need to synchronize data upon update
m The complexity of maintaining programs
m The complexity of developing new programs

m The need for extensive amounts of hardware to support all the master files

In short order, the problems of master files—problems inherent to the medium
itself—became stifling.

It is interesting to speculate what the world of information processing would
look like if the only medium for storing data had been the magnetic tape. If
there had never been anything to store bulk data on other than magnetic tape

e rolution of Decision support systoms JEEM
QOQQQQO

1960 master files, reports

Q Q Q Q Q Q e complexity of—
1965 e maintenance
Q Q Q Q Q Q ¢ development
Q Q Q Q Q Q * synchronization of data
e hardware
lots of master files !!!

DASD database— “a single source of
1970 DBMS data for all processing”

online, high-performance

1975 transaction processing

1980 PCs, 4GL technology

tx processing MIS/DSS

the single-database-serving-all-purposes paradigm

Figure 1.1 The early evolutionary stages of the architected environment.

(BN CHAPTERT1

files, the world would have never had large, fast reservations systems, ATM sys-
tems, and the like. Indeed, the ability to store and manage data on new kinds of
media opened up the way for a more powerful type of processing that brought
the technician and the businessperson together as never before.

The Advent of DASD

By 1970, the day of a new technology for the storage and access of data had
dawned. The 1970s saw the advent of disk storage, or direct access storage
device (DASD). Disk storage was fundamentally different from magnetic tape
storage in that data could be accessed directly on DASD. There was no need to
go through records 1, 2, 3, ... n to get to record n + 1. Once the address of
record n + 1 was known, it was a simple matter to go to record n + 1 directly.
Furthermore, the time required to go to record n + 1 was significantly less than
the time required to scan a tape. In fact, the time to locate a record on DASD
could be measured in milliseconds.

With DASD came a new type of system software known as a database manage-
ment system (DBMS). The purpose of the DBMS was to make it easy for the
programmer to store and access data on DASD. In addition, the DBMS took
care of such tasks as storing data on DASD, indexing data, and so forth. With
DASD and DBMS came a technological solution to the problems of master files.
And with the DBMS came the notion of a “database.” In looking at the mess that
was created by master files and the masses of redundant data aggregated on
them, it is no wonder that in the 1970s a database was defined as a single source
of data for all processing.

By the mid-1970s, online transaction processing (OLTP) made even faster
access to data possible, opening whole new vistas for business and processing.
The computer could now be used for tasks not previously possible, including
driving reservations systems, bank teller systems, manufacturing control sys-
tems, and the like. Had the world remained in a magnetic-tape-file state, most
of the systems that we take for granted today would not have been possible.

PC/4GL Technology

By the 1980s, more new technologies, such as PCs and fourth-generation lan-
guages (4GLs), began to surface. The end user began to assume a role previ-
ously unfathomed—directly controlling data and systems—a role previously
reserved for the data processor. With PCs and 4GL technology came the notion
that more could be done with data than simply processing online transactions.
MIS (management information systems), as it was called in the early days,
could also be implemented. Today known as DSS, MIS was processing used to
drive management decisions. Previously, data and technology were used exclu-

Evolution of Decision Support Systems 5

sively to drive detailed operational decisions. No single database could serve
both operational transaction processing and analytical processing at the same
time. Figure 1.1 shows the single-database paradigm.

Enter the Extract Program

Shortly after the advent of massive OLTP systems, an innocuous program for
“extract” processing began to appear (see Figure 1.2).

The extract program is the simplest of all programs. It rummages through a file
or database, uses some criteria for selecting data, and, on finding qualified data,
transports the data to another file or database.

1985

N

extract program

Start with some parameters, search a file
based on the satisfaction of the
parameters, then pull the data elsewhere.

extract processing

Why extract processing? \ Ej
¢ performance
e control

Figure 1.2 The nature of extract processing.

The extract program became very popular, for at least two reasons:

m Because extract processing can move data out of the way of high-
performance online processing, there is no conflict in terms of perfor-
mance when the data needs to be analyzed en masse.

m When data is moved out of the operational, transaction-processing domain
with an extract program, a shift in control of the data occurs. The end user
then owns the data once he or she takes control of it. For these (and prob-
ably a host of other) reasons, extract processing was soon found every-
where.

The Spider Web

As illustrated in Figure 1.3, a “spider web” of extract processing began to form.
First, there were extracts; then there were extracts of extracts; then extracts of
extracts of extracts; and so forth. It was not unusual for a large company to per-
form as many as 45,000 extracts per day.

This pattern of out-of-control extract processing across the organization
became so commonplace that it was given its own name—the “naturally evolv-
ing architecture”—which occurs when an organization handles the whole
process of hardware and software architecture with a laissez-faire attitude. The
larger and more mature the organization, the worse the problems of the natu-
rally evolving architecture become.

Problems with the Naturally
Evolving Architecture

The naturally evolving architecture presents many challenges, such as:

m Data credibility
m Productivity

m]nability to transform data into information

Lack of Data Credibility

The lack of data credibility is illustrated in Figure 1.3. Say two departments are
delivering a report to management—one department claims that activity is
down 15 percent, the other says that activity is up 10 percent. Not only are the
two departments not in sync with each other, they are off by very large margins.
In addition, trying to reconcile the departments is difficult. Unless very careful
documentation has been done, reconciliation is, for all practical purposes,
impossible.

Evolution of Decision Support Systems 7

Dept. A
+10%

Dept. B
-15%
¢ no time basis of data

¢ algorithmic differential

¢ levels of extraction

e external data

* no common source of data to begin with

Figure 1.3 Lack of data credibility in the naturally evolving architecture.

When management receives the conflicting reports, it is forced to make deci-
sions based on politics and personalities because neither source is more or less
credible. This is an example of the crisis of data credibility in the naturally
evolving architecture.

This crisis is widespread and predictable. Why? As depicted in Figure 1.3, there
are five reasons:

m No time basis of data

The algorithmic differential of data

The levels of extraction

The problem of external data

No common source of data from the beginning

The first reason for the predictability of the crisis is that there is no time basis
for the data. Figure 1.4 shows such a time discrepancy. One department has
extracted its data for analysis on a Sunday evening, and the other department
extracted on a Wednesday afternoon. Is there any reason to believe that analy-
sis done on one sample of data taken on one day will be the same as the analy-
sis for a sample of data taken on another day? Of course not! Data is always
changing within the corporation. Any correlation between analyzed sets of data
that are taken at different points in time is only coincidental.

The second reason is the algorithmic differential. For example, one department
has chosen to analyze all old accounts. Another department has chosen to ana-

Wall
multiple Street

levels of Journal
Dept. A extraction
+10% ?ﬁ ﬁ F ?j
 Sunday evening Ej\))j

* old accts i . é E{ 5

‘@_ "@ multiple

— atvacton
AR

Dept. B
no common source ~15%
of data to begin with + Wednesday p.m
e large accts
Business
Week * loss of identity
¢ no coordination with other

people entering external data

Figure 1.4 The reasons for the predictability of the crisis in data credibility in the natu-
rally evolving architecture.

Evolution of Decision Support Systems 9

lyze all large accounts. Is there any necessary correlation between the charac-
teristics of customers who have old accounts and customers who have large
accounts? Probably not. So why should a very different result surprise anyone?

The third reason is one that merely magnifies the first two reasons. Every time
anew extraction is done, the probabilities of a discrepancy arise because of the
timing or the algorithmic differential. And it is not unusual for a corporation to
have eight or nine levels of extraction being done from the time the data enters
the corporation’s system to the time analysis is prepared for management.
There are extracts, extracts of extracts, extracts of extracts of extracts, and so
on. Each new level of extraction exaggerates the other problems that occur.

The fourth reason for the lack of credibility is the problem posed by external
data. With today’s technologies at the PC level, it is very easy to bring in data
from outside sources. For example, Figure 1.5 shows one analyst bringing data
into the mainstream of analysis from the Wall Street Journal, and another ana-
lyst bringing data in from Business Week. However, when the analyst brings
data in, he or she strips the identity of the external data. Because the origin of
the data is not captured, it becomes generic data that could have come from any
source.

Furthermore, the analyst who brings in data from the Wall Street Journal
knows nothing about the data being entered from Business Week, and vice
versa. No wonder, then, that external data contributes to the lack of credibility
of data in the naturally evolving architecture.

The last contributing factor to the lack of credibility is that often there is no
common source of data to begin with. Analysis for department A originates
from file XYZ. Analysis for department B originates from database ABC. There
is no synchronization or sharing of data whatsoever between file XYZ and data-
base ABC.

Given these reasons, it is no small wonder that there is a crisis of credibility
brewing in every organization that allows its legacy of hardware, software, and
data to evolve naturally into the spider web.

Problems with Productivity

Data credibility is not the only major problem with the naturally evolving archi-
tecture. Productivity is also abysmal, especially when there is a need to analyze
data across the organization.

Consider an organization that has been in business for a while and has built up
a large collection of data, as shown in the top of Figure 1.5.

productivity

Lots of extract programs, each customized, have to cross many technological barriers.

Figure 1.5 The naturally evolving architecture is not conducive to productivity.

Management wants to produce a corporate report, using the many files and col-
lections of data that have accumulated over the years. The designer assigned the
task decides that three things must be done to produce the corporate report:

Evolution of Decision Support Systems 11

m Locate and analyze the data for the report.
m Compile the data for the report.

m Get programmer/analyst resources to accomplish these two tasks.

In order to locate the data, many files and layouts of data must be analyzed.
Some files use Virtual Storage Access Method (VSAM), some use Information
Management System (IMS), some use Adabas, some use Integrated Database
Management System (IDMS). Different skill sets are required in order to access
data across the enterprise. Furthermore, there are complicating factors: for
example, two files might have an element called BALANCE, but the two ele-
ments are very different. In another case, one database might have a file known
as CURRBAL, and another collection of data might have a file called INVLEVEL
that happens to represent the same information as CURRBAL. Having to go
through every piece of data—not just by name but by definition and calcula-
tion—is a very tedious process. But if the corporate report is to be produced,
this exercise must be done properly. Unless data is analyzed and “rationalized,”
the report will end up mixing apples and oranges, creating yet another level of
confusion.

The next task for producing the report is to compile the data once it is located.
The program that must be written to get data from its many sources should be
simple. It is complicated, though, by the following facts:

m Lots of programs have to be written.
m Each program must be customized.

m The programs cross every technology that the company uses.

In short, even though the report-generation program should be simple to write,
retrieving the data for the report is tedious.

In a corporation facing exactly the problems described, an analyst recently esti-
mated a very long time to accomplish the tasks, as shown in Figure 1.6.

If the designer had asked for only two or three man-months of resources, then
generating the report might not have required much management attention. But
when an analyst requisitions many resources, management must consider the
request with all the other requests for resources and must prioritize the
requests.

Creating the reports using a large amount of resources wouldn’t be bad if there
were a one-time penalty to be paid. In other words, if the first corporate report
generated required a large amount of resources, and if all succeeding reports
could build on the first report, then it might be worthwhile to pay the price for
generating the first report. But that is not the case.

My cuAPTERT

productivity

<
<
<) <)
<)
<) gl
<)

--
'l-
3"
- X = F _
X

LOCATE DATA 9-12 months

GET DATA 15—-24 months
PGMMER/ANALYST ??7?
3-5 years
1st report
2nd report »
3rd report » 3-5 years

Unless circumstances are very unusual, the work done for the 1st report
does not pave the way for the 2nd report, orthe 3rd

Figure 1.6 When the first report is being written, the requirements for future reports are
not known.

Unless future corporate reporting requirements are known in advance and are
factored into building the first corporate report, each new corporate report will
probably require the same large overhead! In other words, it is unlikely that the
first corporate report will be adequate for future corporate reporting require-
ments.

Productivity, then, in the corporate environment is a major issue in the face of
the naturally evolving architecture and its legacy systems. Simply stated, when
using the spider web of legacy systems, information is expensive to access and
takes a long time to create.

From Data to Information

As if productivity and credibility were not problems enough, there is another
major fault of the naturally evolving architecture—the inability to go from data to

Evolution of Decision Support Systems 13

information. At first glance, the notion of going from data to information seems
to be an ethereal concept with little substance. But that is not the case at all.

Consider the following request for information, typical in a banking environ-
ment: “How has account activity differed this year from each of the past five
years?”

Figure 1.7 shows the request for information.

going from data to information

DDA

loans CD

passbook

First, you run into lots of applications.

loans

passbook

same element,
different name

element exists
only here

different element,
same name

Next, you run into the lack of integration across applications.

Figure 1.7 “How has account activity been different this year from each of the past five
years for the financial institution?”

14

The first thing the DSS analyst discovers in trying to satisfy the request for
information is that going to existing systems for the necessary data is the worst
thing to do. The DSS analyst will have to deal with lots of unintegrated legacy
applications. For example, a bank may have separate savings, loan, direct-
deposit, and trust applications. However, trying to draw information from them
on a regular basis is nearly impossible because the applications were never
constructed with integration in mind, and they are no easier for the DSS analyst
to decipher than they are for anyone else.

But integration is not the only difficulty the analyst meets in trying to satisfy an
informational request. A second major obstacle is that there is not enough his-
torical data stored in the applications to meet the needs of the DSS request.

Figure 1.8 shows that the loan department has up to two years’ worth of data.
Passbook processing has up to one year of data. DDA applications have up to
60 days of data. And CD processing has up to 18 months of data. The applica-
tions were built to service the needs of current balance processing. They were
never designed to hold the historical data needed for DSS analysis. It is no won-
der, then, that going to existing systems for DSS analysis is a poor choice. But
where else is there to go?

The systems found in the naturally evolving architecture are simply inadequate
for supporting information needs. They lack integration and there is a discrep-

Example of going from data to information:

“How has account activity been different this year from each of the past five
for the financial institution?

DDA
loans current cD
value—
current 30 days curent
value— value—
2 years passbook 18 months
current
value—
1 year

Figure 1.8 Existing applications simply do not have the historical data required to con-
vert data into information.

Evolution of Decision Support Systems 15

ancy between the time horizon (or parameter of time) needed for analytical
processing and the available time horizon that exists in the applications.

A Change in Approach

The status quo of the naturally evolving architecture, where most shops began,
simply is not robust enough to meet the future needs. What is needed is some-
thing much larger—a change in architectures. That is where the architected

data warehouse comes in.

There are fundamentally two kinds of data at the heart of an “architected” envi-
ronment—primitive data and derived data. Figure 1.9 shows some of the major
differences between primitive and derived data.

Following are some other differences between the two.

m Primitive data is detailed data used to run the day-to-day operations of the
company. Derived data has been summarized or otherwise calculated to
meet the needs of the management of the company.

PRIMITIVE DATA/OPERATIONAL DATA

e application oriented

e detailed

¢ accurate, as of the moment of access

e serves the clerical community

¢ can be updated

e run repetitively

¢ requirements for processing understood
a priori

e compatible with the SDLC

e performance sensitive

* accessed a unit at a time

e transaction driven

e control of update a major concern in
terms of ownership

* high availability

* managed in its entirety

¢ nonredundancy

¢ static structure; variable contents

e small amount of data used in a process

e supports day-to-day operations

* high probability of access

DERIVED DATA/DSS DATA

 subject oriented

e summarized, otherwise refined

¢ represents values over time, snapshots

e serves the managerial community

e is not updated

¢ run heuristically

e requirements for processing not
understood a priori

¢ completely different life cycle

e performance relaxed

* accessed a set at a time

e analysis driven

e control of update no issue

 relaxed availability

* managed by subsets

¢ redundancy is a fact of life

o flexible structure

¢ large amount of data used in a process
e supports managerial needs

¢ low, modest probability of access

Figure 1.9 The whole notion of data is changed in the architected environment.

m Primitive data can be updated. Derived data can be recalculated but cannot
be directly updated.

m Primitive data is primarily current-value data. Derived data is often histori-
cal data.

m Primitive data is operated on by repetitive procedures. Derived data is
operated on by heuristic, nonrepetitive programs and procedures.

m Operational data is primitive; DSS data is derived.

m Primitive data supports the clerical function. Derived data supports the
managerial function.

It is a wonder that the information processing community ever thought that
both primitive and derived data would fit and peacefully coexist in a single
database. In fact, primitive data and derived data are so different that they do
not reside in the same database or even the same environment.

The Architected Environment

The natural extension of the split in data caused by the difference between
primitive and derived data is shown in Figure 1.10.

levels of the architecture

I B o O

operational atomic/data departmental individual
warehouse

e detailed e most granular e parochial e temporary
 day to day e time variant e some derived; e ad hoc
e current valued e integrated some primitive * heuristic
e high probability e subject oriented e typical depts * non-

of access * some summary * acctg repetitive
e application ¢ marketing e PC, work-

oriented * engineering station

e actuarial based

* manufacturing

Figure 1.10 Although it is not apparent at first glance, there is very little redundancy of
data across the architected environment.

Evolution of Decision Support Systems 17

There are four levels of data in the architected environment—the operational
level, the atomic or the data warehouse level, the departmental (or the data
mart level), and the individual level. These different levels of data are the basis
of a larger architecture called the corporate information factory. The opera-
tional level of data holds application-oriented primitive data only and primarily
serves the high-performance transaction-processing community. The data-
warehouse level of data holds integrated, historical primitive data that cannot
be updated. In addition, some derived data is found there. The departmental/
data mart level of data contains derived data almost exclusively. The depart-
mental/data mart level of data is shaped by end-user requirements into a form
specifically suited to the needs of the department. And the individual level of
data is where much heuristic analysis is done.

The different levels of data form a higher set of architectural entities. These
entities constitute the corporate information factory, and they are described in
more detail in my book The Corporate Information Factory, Third Edition
(Wiley, 2002).

Some people believe the architected environment generates too much redun-
dant data. Though it is not obvious at first glance, this is not the case at all.
Instead, it is the spider web environment that generates the gross amounts of
data redundancy.

Consider the simple example of data throughout the architecture, shown in Fig-
ure 1.11. At the operational level there is a record for a customer, J Jones. The
operational-level record contains current-value data that can be updated at a
moment’s notice and shows the customer’s current status. Of course, if the
information for J Jones changes, the operational-level record will be changed to
reflect the correct data.

The data warehouse environment contains several records for J Jones, which
show the history of information about J Jones. For example, the data ware-
house would be searched to discover where J Jones lived last year. There is no
overlap between the records in the operational environment, where current
information is found, and the data warehouse environment, where historical
information is found. If there is a change of address for J Jones, then a new
record will be created in the data warehouse, reflecting the from and to dates
that J Jones lived at the previous address. Note that the records in the data
warehouse do not overlap. Also note that there is some element of time associ-
ated with each record in the data warehouse.

The departmental environment—sometimes called the data mart level, the
OLAP level, or the multidimensional DBMS level—contains information useful
to the different parochial departments of a company. There is a marketing
departmental database, an accounting departmental database, an actuarial

a simple example—a customer

—

operational atomic/data dept/data mart individual
warehouse customers by month
J Jones J Jones Jan - 4101 customers
123 Main 1986-1987 Feb - 4209 since 1982
Street 456 High St Mar - 4175 with acct
Credit - AA Credit - B Apr - 4215 balances

> 5,000 and
with credit

J Jones ;
e87-1989 | | T o higher
456 High St
Credit - A

temporary!
J Jones
1989-pres

123 Main St
Credit - AA

What trends are
there for the
customers we are
analyzing?

What is J Jones
credit rating right
now?

What has been the Are we attracting

credit history of J more or fewer

Jones? customers over
time?

Figure 1.11 The kinds of queries for which the different levels of data can be used.

departmental database, and so forth. The data warehouse is the source of all
departmental data. While data in the data mart certainly relates to data found in
the operational level or the data warehouse, the data found in the departmen-
tal/data mart environment is fundamentally different from the data found in the
data mart environment, because data mart data is denormalized, summarized,
and shaped by the operating requirements of a single department.

Typical of data at the departmental/data mart level is a monthly customer file.
In the file is a list of all customers by category. J Jones is tallied into this sum-
mary each month, along with many other customers. It is a stretch to consider
the tallying of information to be redundant.

The final level of data is the individual level. Individual data is usually tempo-
rary and small. Much heuristic analysis is done at the individual level. As a rule,

Evolution of Decision Support Systems 19

the individual levels of data are supported by the PC. Executive information
systems (EIS) processing typically runs on the individual levels.

Data Integration in the
Architected Environment

One important aspect of the architected environment that is not shown in Fig-
ure 1.11 is the integration of data that occurs across the architecture. As data
passes from the operational environment to the data warehouse environment,
it is integrated, as shown in Figure 1.12.

There is no point in bringing data over from the operational environment into
the data warehouse environment without integrating it. If the data arrives at the
data warehouse in an unintegrated state, it cannot be used to support a corpo-
rate view of data. And a corporate view of data is one of the essences of the
architected environment.

In every environment the unintegrated operational data is complex and difficult
to deal with. This is simply a fact of life. And the task of getting one’s hands dirty
with the process of integration is never pleasant. In order to achieve the real
benefits of a data warehouse, though, it is necessary to undergo this painful,
complex, and time-consuming exercise. Extract/transform/load (ETL) software
can automate much of this tedious process. In addition, this process of integra-
tion has to be done only once. But, in any case, it is mandatory that data flow-
ing into the data warehouse be integrated, not merely tossed—whole
cloth—into the data warehouse from the operational environment.

Who Is the User?

Much about the data warehouse is fundamentally different from the operational
environment. When developers and designers who have spent their entire
careers in the operational environment first encounter the data warehouse,
they often feel ill at ease. To help them appreciate why there is such a difference
from the world they have known, they should understand a little bit about the
different users of the data warehouse.

The data-warehouse user—also called the DSS analyst—is a businessperson
first and foremost, and a technician second. The primary job of the DSS analyst
is to define and discover information used in corporate decision-making.

It is important to peer inside the head of the DSS analyst and view how he or
she perceives the use of the data warehouse. The DSS analyst has a mindset of
“Give me what I say I want, then I can tell you what I really want.” In other
words, the DSS analyst operates in a mode of discovery. Only on seeing a report

20

a simple example—a customer

Y

operational atomic/data
warehouse
life policy

J Jones
female
July 20, 1945

customer
auto polic J Jones
policy female
July 20, 1945—dob
J Jones .
. two tickets last year
two tickets last year —_—>

one bad accident

one bad accident

——> 123 Main Street
.................... o married
two children
. high blood pressure
homeowner policy

J Jones
123 Main Street
married

health policy
J Jones
two children

high blood pressure

Figure 1.12 As data is transformed from the operational environment to the data ware-
house environment, it is also integrated.

or seeing a screen can the DSS analyst begin to explore the possibilities for
DSS. The DSS analyst often says, “Ah! Now that I see what the possibilities are,
I can tell you what I really want to see. But until I know what the possibilities
are I cannot describe to you what I want.”

Evolution of Decision Support Systems 21

The attitude of the DSS analyst is important for the following reasons:

m [t is legitimate. This is simply how DSS analysts think and how they con-
duct their business.

m [t is pervasive. DSS analysts around the world think like this.

m [t has a profound effect on the way the data warehouse is developed and
on how systems using the data warehouse are developed.

The classical system development life cycle (SDLC) does not work in the world
of the DSS analyst. The SDLC assumes that requirements are known at the start
of design (or at least can be discovered). In the world of the DSS analyst,
though, new requirements usually are the last thing to be discovered in the DSS
development life cycle. The DSS analyst starts with existing requirements, but
factoring in new requirements is almost an impossibility. A very different devel-
opment life cycle is associated with the data warehouse.

The Development Life Cycle

We have seen how operational data is usually application oriented and as a con-
sequence is unintegrated, whereas data warehouse data must be integrated.
Other major differences also exist between the operational level of data and
processing and the data warehouse level of data and processing. The underly-
ing development life cycles of these systems can be a profound concern, as
shown in Figure 1.13.

Figure 1.13 shows that the operational environment is supported by the classi-
cal systems development life cycle (the SDLC). The SDLC is often called the
“waterfall” development approach because the different activities are specified
and one activity-upon its completion-spills down into the next activity and trig-
gers its start.

The development of the data warehouse operates under a very different life
cycle, sometimes called the CLDS (the reverse of the SDLC). The classical
SDLC is driven by requirements. In order to build systems, you must first under-
stand the requirements. Then you go into stages of design and development.
The CLDS is almost exactly the reverse: The CLDS starts with data. Once the
data is in hand, it is integrated and then tested to see what bias there is to the
data, if any. Programs are then written against the data. The results of the pro-
grams are analyzed, and finally the requirements of the system are understood.
The CLDS is usually called a “spiral” development methodology. A spiral devel-
opment methodology is included on the Web site, www.billinmon.com.

22

requirements Ej

O =
Ej wareh(ﬁA
program

program \

O\ N

classical SDLC data warehouse SDLC

* requirements gathering ¢ implement warehouse
* analysis e integrate data

* design e test for bias

* programming e program against data
e testing ¢ design DSS system

e integration e analyze results

implementation understand requirements

Figure 1.13 The system development life cycle for the data warehouse environment is
almost exactly the opposite of the classical SDLC.

The CLDS is a classic data-driven development life cycle, while the SDLC is a
classic requirements-driven development life cycle. Trying to apply inappropri-
ate tools and techniques of development results only in waste and confusion.
For example, the CASE world is dominated by requirements-driven analysis.
Trying to apply CASE tools and techniques to the world of the data warehouse
is not advisable, and vice versa.

Patterns of Hardware Utilization

Yet another major difference between the operational and the data warehouse
environments is the pattern of hardware utilization that occurs in each envi-
ronment. Figure 1.14 illustrates this.

The left side of Figure 1.14 shows the classic pattern of hardware utilization for
operational processing. There are peaks and valleys in operational processing,
but ultimately there is a relatively static and predictable pattern of hardware
utilization.

Evolution of Decision Support Systems 23

operational data warehouse
100%

Figure 1.14 The different patterns of hardware utilization in the different environments.

There is an essentially different pattern of hardware utilization in the data
warehouse environment (shown on the right side of the figure)—a binary pat-
tern of utilization. Either the hardware is being utilized fully or not at all. It is
not useful to calculate a mean percentage of utilization for the data warehouse
environment. Even calculating the moments when the data warehouse is heav-
ily used is not particularly useful or enlightening.

This fundamental difference is one more reason why trying to mix the two envi-
ronments on the same machine at the same time does not work. You can optimize
your machine either for operational processing or for data warehouse process-
ing, but you cannot do both at the same time on the same piece of equipment.

Setting the Stage for Reengineering

Although indirect, there is a very beneficial side effect of going from the pro-
duction environment to the architected, data warehouse environment. Fig-
ure 1.15 shows the progression.

In Figure 1.15, a transformation is made in the production environment. The
first effect is the removal of the bulk of data—mostly archival—from the pro-
duction environment. The removal of massive volumes of data has a beneficial
effect in various ways. The production environment is easer to:

m Correct
m Restructure

m Monitor

m Index

In short, the mere removal of a significant volume of data makes the production
environment a much more malleable one.

Another important effect of the separation of the operational and the data
warehouse environments is the removal of informational processing from the

24

production
environment

— N

operational data warehouse
environment environment

Figure 1.15 The transformation from the legacy systems environment to the archi-
tected, data warehouse-centered environment.

production environment. Informational processing occurs in the form of
reports, screens, extracts, and so forth. The very nature of information pro-
cessing is constant change. Business conditions change, the organization
changes, management changes, accounting practices change, and so on. Each
of these changes has an effect on summary and informational processing. When
informational processing is included in the production, legacy environment,
maintenance seems to be eternal. But much of what is called maintenance in
the production environment is actually informational processing going
through the normal cycle of changes. By moving most informational process-
ing off to the data warehouse, the maintenance burden in the production envi-
ronment is greatly alleviated. Figure 1.16 shows the effect of removing volumes
of data and informational processing from the production environment.

Once the production environment undergoes the changes associated with
transformation to the data warehouse-centered, architected environment, the
production environment is primed for reengineering because:

m |t is smaller.
m [t is simpler.

m It is focused.

In summary, the single most important step a company can take to make
its efforts in reengineering successful is to first go to the data warehouse
environment.

Evolution of Decision Support Systems 25

the bulk of historical
data that has a very
low probability of
access and is seldom
if ever changed

production
environment

informational, analytical
requirements that show
up as eternal maintenance

Figure 1.16 Removing unneeded data and information requirements from the produc-
tion environment—the effects of going to the data warehouse environment.

Monitoring the Data Warehouse Environment

Once the data warehouse is built, it must be maintained. A major component of
maintaining the data warehouse is managing performance, which begins by
monitoring the data warehouse environment.

Two operating components are monitored on a regular basis: the data residing
in the data warehouse and the usage of the data. Monitoring the data in the data
warehouse environment is essential to effectively manage the data warehouse.
Some of the important results that are achieved by monitoring this data include
the following:

m Jdentifying what growth is occurring, where the growth is occurring, and at
what rate the growth is occurring

Identifying what data is being used

Calculating what response time the end user is getting
Determining who is actually using the data warehouse
Specifying how much of the data warehouse end users are using
Pinpointing when the data warehouse is being used

Recognizing how much of the data warehouse is being used

Examining the level of usage of the data warehouse

26

If the data architect does not know the answer to these questions, he or she
can'’t effectively manage the data warehouse environment on an ongoing basis.

As an example of the usefulness of monitoring the data warehouse, consider
the importance of knowing what data is being used inside the data warehouse.
The nature of a data warehouse is constant growth. History is constantly being
added to the warehouse. Summarizations are constantly being added. New
extract streams are being created. And the storage and processing technology
on which the data warehouse resides can be expensive. At some point the ques-
tion arises, “Why is all of this data being accumulated? Is there really anyone
using all of this?” Whether there is any legitimate user of the data warehouse,
there certainly is a growing cost to the data warehouse as data is put into it dur-
ing its normal operation.

As long as the data architect has no way to monitor usage of the data inside the
warehouse, there is no choice but to continually buy new computer resources-
more storage, more processors, and so forth. When the data architect can mon-
itor activity and usage in the data warehouse, he or she can determine which
data is not being used. It is then possible, and sensible, to move unused data to
less expensive media. This is a very real and immediate payback to monitoring
data and activity.

The data profiles that can be created during the data-monitoring process
include the following:

m A catalog of all tables in the warehouse

m A profile of the contents of those tables

m A profile of the growth of the tables in the data warehouse
m A catalog of the indexes available for entry to the tables

m A catalog of the summary tables and the sources for the summary

The need to monitor activity in the data warehouse is illustrated by the follow-
ing questions:

m What data is being accessed?

m When?

m By whom?

m How frequently?

m At what level of detail?

What is the response time for the request?

At what point in the day is the request submitted?

How big was the request?

Was the request terminated, or did it end naturally?

Evolution of Decision Support Systems 27

Response time in the DSS environment is quite different from response time in
the online transaction processing (OLTP) environment. In the OLTP environ-
ment, response time is almost always mission critical. The business starts to
suffer immediately when response time turns bad in OLTP. In the DSS environ-
ment there is no such relationship. Response time in the DSS data warehouse
environment is always relaxed. There is no mission-critical nature to response
time in DSS. Accordingly, response time in the DSS data warehouse environ-
ment is measured in minutes and hours and, in some cases, in terms of days.

Just because response time is relaxed in the DSS data warehouse environment
does not mean that response time is not important. In the DSS data warehouse
environment, the end user does development iteratively. This means that the
next level of investigation of any iterative development depends on the results
attained by the current analysis. If the end user does an iterative analysis and
the turnaround time is only 10 minutes, he or she will be much more productive
than if turnaround time is 24 hours. There is, then, a very important relationship
between response time and productivity in the DSS environment. Just because
response time in the DSS environment is not mission critical does not mean
that it is not important.

The ability to measure response time in the DSS environment is the first step
toward being able to manage it. For this reason alone, monitoring DSS activity
is an important procedure.

One of the issues of response time measurement in the DSS environment is the
question, “What is being measured?” In an OLTP environment, it is clear what is
being measured. A request is sent, serviced, and returned to the end user. In the
OLTP environment the measurement of response time is from the moment of
submission to the moment of return. But the DSS data warehouse environment
varies from the OLTP environment in that there is no clear time for measuring
the return of data. In the DSS data warehouse environment often a lot of data is
returned as a result of a query. Some of the data is returned at one moment, and
other data is returned later. Defining the moment of return of data for the data
warehouse environment is no easy matter. One interpretation is the moment of
the first return of data; another interpretation is the last return of data. And
there are many other possibilities for the measurement of response time; the
DSS data warehouse activity monitor must be able to provide many different
interpretations.

One of the fundamental issues of using a monitor on the data warehouse envi-
ronment is where to do the monitoring. One place the monitoring can be done
is at the end-user terminal, which is convenient many machine cycles are free
here and the impact on systemwide performance is minimal. To monitor the
system at the end-user terminal level implies that each terminal that will be
monitored will require its own administration. In a world where there are as

(LBl CHAPTERT

many as 10,000 terminals in a single DSS network, trying to administer the mon-
itoring of each terminal is nearly impossible.

The alternative is to do the monitoring of the DSS system at the server level.
After the query has been formulated and passed to the server that manages the
data warehouse, the monitoring of activity can occur. Undoubtedly, administra-
tion of the monitor is much easier here. But there is a very good possibility that
a systemwide performance penalty will be incurred. Because the monitor is
using resources at the server, the impact on performance is felt throughout the
DSS data warehouse environment. The placement of the monitor is an impor-
tant issue that must be thought out carefully. The trade-off is between ease of
administration and minimization of performance requirements.

One of the most powerful uses of a monitor is to be able to compare today’s
results against an “average” day. When unusual system conditions occur, it is
often useful to ask, “How different is today from the average day?” In many
cases, it will be seen that the variations in performance are not nearly as bad as
imagined. But in order to make such a comparison, there needs to be an
average-day profile, which contains the standard important measures that
describe a day in the DSS environment. Once the current day is measured, it
can then be compared to the average-day profile.

Of course, the average day changes over time, and it makes sense to track these
changes periodically so that long-term system trends can be measured.

Summary

This chapter has discussed the origins of the data warehouse and the larger
architecture into which the data warehouse fits. The architecture has evolved
throughout the history of the different stages of information processing. There
are four levels of data and processing in the architecture—the operational level,
the data warehouse level, the departmental/data mart level, and the individual
level.

The data warehouse is built from the application data found in the operational
environment. The application data is integrated as it passes into the data ware-
house. The act of integrating data is always a complex and tedious task. Data
flows from the data warehouse into the departmental/data mart environment.
Data in the departmental/data mart environment is shaped by the unique pro-
cessing requirements of the department.

The data warehouse is developed under a completely different development
approach than that used for classical application systems. Classically applica-
tions have been developed by a life cycle known as the SDLC. The data ware-

Evolution of Decision Support Systems 29

house is developed under an approach called the spiral development method-
ology. The spiral development approach mandates that small parts of the data
warehouse be developed to completion, then other small parts of the ware-
house be developed in an iterative approach.

The users of the data warehouse environment have a completely different
approach to using the system. Unlike operational users who have a straightfor-
ward approach to defining their requirements, the data warehouse user oper-
ates in a mindset of discovery. The end user of the data warehouse says, “Give
me what I say I want, then I can tell you what I really want.”

The Data Warehou
Environment

T

CHAPTER

he data warehouse is the heart of the architected environment, and is the foun-
dation of all DSS processing. The job of the DSS analyst in the data warehouse
environment is immeasurably easier than in the classical legacy environment
because there is a single integrated source of data (the data warehouse) and
because the granular data in the data warehouse is easily accessible.

This chapter will describe some of the more important aspects of the data ware-
house. A data warehouse is a subject-oriented, integrated, nonvolatile, and
time-variant collection of data in support of management’s decisions. The data
warehouse contains granular corporate data.

The subject orientation of the data warehouse is shown in Figure 2.1. Classical
operations systems are organized around the applications of the company. For
an insurance company, the applications may be auto, health, life, and casualty.
The major subject areas of the insurance corporation might be customer, pol-
icy, premium, and claim. For a manufacturer, the major subject areas might be
product, order, vendor, bill of material, and raw goods. For a retailer, the major
subject areas may be product, SKU, sale, vendor, and so forth. Each type of
company has its own unique set of subjects.

The second salient characteristic of the data warehouse is that it is integrated.
Of all the aspects of a data warehouse, integration is the most important. Data
is fed from multiple disparate sources into the data warehouse. As the data is

31

32

subject orientation

operational data warehouse
N
Mee— 1
auto customer
SNSa—
N
Mee—
life policy
SN—
health premium
casualty Ej claim
applications subjects

Figure 2.1 An example of a subject orientation of data.

fed it is converted, reformatted, resequenced, summarized, and so forth. The
result is that data—once it resides in the data warehouse—has a single physical
corporate image. Figure 2.2 illustrates the integration that occurs when data
passes from the application-oriented operational environment to the data ware-
house.

Design decisions made by applications designers over the years show up in dif-
ferent ways. In the past, when application designers built an application, they
never considered that the data they were operating on would ever have to be
integrated with other data. Such a consideration was only a wild theory. Conse-
quently, across multiple applications there is no application consistency in
encoding, naming conventions, physical attributes, measurement of attributes,
and so forth. Each application designer has had free rein to make his or her own
design decisions. The result is that any application is very different from any
other application.

Data is entered into the data warehouse in such a way that the many inconsis-
tencies at the application level are undone. For example, in Figure 2.2, as far as

The Data Warehouse Environment 33

integration

operational data warehouse

encoding
appl A mf m,f
applB 1,0

O 1
applC xy S /

appl D male, female

attribute measurement
appl A pipeline—cm

N . / ipeline—cm
appl B pipeline—inches O PP

appl C pipeline—mcf O /

appl D pipeline—yds

multiple sources
appl A description

appl B descr!pt!on — description
appl C description

/—V

appl D description

conflicting keys
appl A key char(10) O \
appl B key dec fixed(9,2) O —— T ani
appl C key pic ‘9999999’ O ey char(12)
appl D key char(12)

Figure 2.2 The issue of integration.

encoding of gender is concerned, it matters little whether data in the ware-
house is encoded as m/f or 1/0 . What does matter is that regardless of method
or source application, warehouse encoding is done consistently. If application
data is encoded as X/Y, it is converted as it is moved to the warehouse. The
same consideration of consistency applies to all application design issues, such
as naming conventions, key structure, measurement of attributes, and physical
characteristics of data.

The third important characteristic of a data warehouse is that it is nonvolatile.
Figure 2.3 illustrates nonvolatility of data and shows that operational data is
regularly accessed and manipulated one record at a time. Data is updated in the
operational environment as a regular matter of course, but data warehouse data

34

nonvolatility
data
operational warehouse
chng
access (]
O
O
dlet load g
isrt chng access
record-by-record mass load/
manipulation of data access of data

Figure 2.3 The issue of nonvolatility.

exhibits a very different set of characteristics. Data warehouse data is loaded
(usually en masse) and accessed, but it is not updated (in the general sense).
Instead, when data in the data warehouse is loaded, it is loaded in a snapshot,
static format. When subsequent changes occur, a new snapshot record is writ-
ten. In doing so a history of data is kept in the data warehouse.

The last salient characteristic of the data warehouse is that it is time variant.
Time variancy implies that every unit of data in the data warehouse is accurate
as of some one moment in time. In some cases, a record is time stamped. In
other cases, a record has a date of transaction. But in every case, there is some
form of time marking to show the moment in time during which the record is
accurate. Figure 2.4 illustrates how time variancy of data warehouse data can
show up in several ways.

Different environments have different time horizons. A time horizon is the para-
meters of time represented in an environment. The collective time horizon for
the data found inside a data warehouse is significantly longer than that of oper-
ational systems. A 60-to-90-day time horizon is normal for operational systems;
a 5-to-10-year time horizon is normal for the data warehouse. As a result of this
difference in time horizons, the data warehouse contains much more history
than any other environment.

Operational databases contain current-value data-data whose accuracy is valid
as of the moment of access. For example, a bank knows how much money a
customer has on deposit at any moment in time. Or an insurance company
knows what policies are in force at any moment in time. As such, current-value
data can be updated as business conditions change. The bank balance is
changed when the customer makes a deposit. The insurance coverage is

The Data Warehouse Environment 35

time variancy

operational data warehouse
e time horizon—current to 60-90 days e time horizon—5-10 years
e update of records ¢ sophisticated snapshots of data
e key structure may/may not contain an e key structure contains an element
element of time of time

Figure 2.4 The issue of time variancy.

changed when a customer lets a policy lapse. Data warehouse data is very
unlike current-value data, however. Data warehouse data is nothing more than
a sophisticated series of snapshots, each taken at one moment in time. The
effect created by the series of snapshots is that the data warehouse has a
historical sequence of activities and events, something not at all apparent in a
current-value environment where only the most current value can be found.

The key structure of operational data may or may not contain some element of
time, such as year, month, day, and so on. The key structure of the data ware-
house always contains some element of time. The embedding of the element of
time can take many forms, such as a time stamp on every record, a time stamp
for a whole database, and so forth.

The Structure of the Data Warehouse

Figure 2.5 shows that there are different levels of detail in the data warehouse.
There is an older level of detail (usually on alternate, bulk storage), a current
level of detail, a level of lightly summarized data (the data mart level), and a
level of highly summarized data. Data flows into the data warehouse from the
operational environment. Usually significant transformation of data occurs at
the passage from the operational level to the data warehouse level.

Once the data ages, it passes from current detail to older detail. As the data is
summarized, it passes from current detail to lightly summarized data, then from
lightly summarized data to highly summarized data.

36

monthly sales
by product line
1981-1992

oy 500 Sl 500 Sm

) weekly sales by
m lightly subproduct line
e summarized 1984-1992
t (datamart)
a
d
a
t
a current sales detail

detail 1990-1991

operational /

t fi ti

ransiormation old sales detail
detail 1984-1989

Figure 2.5 The structure of the data warehouse.

Subject Orientation

The data warehouse is oriented to the major subject areas of the corporation
that have been defined in the high-level corporate data model. Typical subject
areas include the following:

m Customer
m Product

Transaction or activity

-

m Policy
m Claim
|

Account

Each major subject area is physically implemented as a series of related tables
in the data warehouse. A subject area may consist of 10, 100, or even more

base customer
data 1985-1987

The Data Warehouse Environment 37

customer

base customer
data 1988-1990

customer activity
1986-1989

customer ID
from date
to date
name
address
phone

dob

sex

customer ID
from data
to date

name

address
credit rating
employer

dob

sex

customer ID
month

number of transactions
average tx amount

tx high

tx low

txs cancelled

customer activity
detail 1987-1989

customer activity
detail 1990-1991

customer ID

activity date
amount
location
for item
invoice no
clerk ID
order no

customer ID
activity date
amount
location
order no
line item no
sales amount
invoice no
deliver to

Figure 2.6 Data warehouse data is organized by major subject area—in this case,

by customer.

38

physical tables that are all related. For example, the subject area implementa-
tion for a customer might look like that shown in Figure 2.6.

There are five related physical tables in Figure 2.6, each of which has been
designed to implement a part of a major subject area—customer. There is a
base table for customer information as defined from 1985 to 1987. There is
another for the definition of customer data between 1988 and 1990. There is a
cumulative customer activity table for activities between 1986 and 1989. Each
month a summary record is written for each customer record based on cus-
tomer activity for the month.

There are detailed activity files by customer for 1987 through 1989 and another
one for 1990 through 1991. The definition of the data in the files is different,
based on the year.

All of the physical tables for the customer subject area are related by a common
key. Figure 2.7 shows that the key—customer ID—connects all of the data

customer ID
from data
customer ID to date customer ID
from date name month
to date address number of transactions
name credit rating average tx amount
address employer tx high
phone dob tx low
dob sex txs cancelled
sex Lo e

customer ID
activity date
amount
location
order no

customer ID
activity date

amount

location line item no
for item sales amount
invoice no invoice no
clerk ID deliver to

order no | | ceeeeeeeeeen

Figure 2.7 The collections of data that belong to the same subject area are tied
together by a common key.

The Data Warehouse Environment 39

found in the customer subject area. Another interesting aspect of the customer
subject area is that it may reside on different media, as shown in Figure 2.8.
There is nothing to say that a physical table must reside on disk, even if it
relates to other data that does reside on a disk.

Figure 2.8 shows that some of the related subject area data resides on direct
access storage device (DASD) and some resides on magnetic tape. One impli-
cation of data residing on different media is that there may be more than one
DBMS managing the data in a warehouse or that some data may not be man-
aged by a DBMS at all. Just because data resides on magnetic tape or some stor-
age media other than disk storage does not mean that the data is not a part of
the data warehouse.

Data that has a high probability of access and a low volume of storage resides
on a medium that is fast and relatively expensive. Data that has a low probabil-
ity of access and is bulky resides on a medium that is cheaper and slower to
access. Usually (but not always) data that is older has a lower probability of
access. As arule, the older data resides on a medium other than disk storage.

DASD and magnetic tape are the two most popular media on which to store
data in a data warehouse. But they are not the only media; two others that
should not be overlooked are fiche and optical disk. Fiche is good for storing

customer

base customer
data 1988—1990

base customer

customer activity
data 1985-1987

1986-1989

Q Q

customer activity customer activity
detail 1987-1989 detail 1990-1991

Figure 2.8 The subject area may contain data on different media in the data ware-
house.

40

detailed records that never have to be reproduced in an electronic medium
again. Legal records are often stored on fiche for an indefinite period of time.
Optical disk storage is especially good for data warehouse storage because it is
cheap, relatively fast, and able to hold a mass of data. Another reason why opti-
cal disk is useful is that data warehouse data, once written, is seldom, if ever,
updated. This last characteristic makes optical disk storage a very desirable
choice for data warehouses.

Another interesting aspect of the files (shown in Figure 2.8) is that there is both
a level of summary and a level of detail for the same data. Activity by month is
summarized. The detail that supports activity by month is stored at the mag-
netic tape level of data. This is a form of a “shift in granularity,” which will be
discussed later.

When data is organized around the subject-in this case, the customer—each key
has an element of time, as shown in Figure 2.9.

customer ID
from data
customer ID o daie customer ID
from date name month
to date address number of transactions
name credit rating average tx amount
address employer tx high
phone dob tx low
dob sex txs cancelled
sex | e
customer ID
activity date
customer ID amounF
activity date location
amount order no
location line item no

sales amount
invoice no

for item

invoice no :
clerk ID deliver to

order no | | ceeeeeeeeee.n

Figure 2.9 Each table in the data warehouse has an element of time as a part of the
key structure, usually the lower part.

The Data Warehouse Environment 1

Some tables are organized on a from-date-to-date basis. This is called a contin-
uous organization of data. Other tables are organized on a cumulative monthly
basis, and others on an individual date of record or activity basis. But all
records have some form of date attached to the key, usually the lower part of
the key.

Day 1-Day n Phenomenon

Data warehouses are not built all at once. Instead, they are designed and popu-
lated a step at a time, and as such are evolutionary, not revolutionary. The costs
of building a data warehouse all at once, the resources required, and the dis-
ruption to the environment all dictate that the data warehouse be built in an
orderly iterative, step-at-a-time fashion. The “big bang” approach to data ware-
house development is simply an invitation to disaster and is never an appropri-
ate alternative.

Figure 2.10 shows the typical process of building a data warehouse. On day 1
there is a polyglot of legacy systems essentially doing operational, transactional
processing. On day 2, the first few tables of the first subject area of the data
warehouse are populated. At this point, a certain amount of curiosity is raised,
and the users start to discover data warehouses and analytical processing.

On day 3, more of the data warehouse is populated, and with the population of
more data comes more users. Once users find there is an integrated source of
data that is easy to get to and has a historical basis designed for looking at data
over time, there is more than curiosity. At about this time, the serious DSS ana-
lyst becomes attracted to the data warehouse.

On day 4, as more of the warehouse becomes populated, some of the data that
had resided in the operational environment becomes properly placed in the
data warehouse. And the data warehouse is now discovered as a source for
doing analytical processing. All sorts of DSS applications spring up. Indeed, so
many users and so many requests for processing, coupled with a rather large
volume of data that now resides in the warehouse, appear that some users are
put off by the effort required to get to the data warehouse. The competition to
get at the warehouse becomes an obstacle to its usage.

On day 5, departmental databases (data mart or OLAP) start to blossom.
Departments find that it is cheaper and easier to get their processing done by
bringing data from the data warehouse into their own departmental processing
environment. As data goes to the departmental level, a few DSS analysts are
attracted.

42

O
day 1 @@@
O E]E]
existing systems
g data warehouse
Je5 = %
day 2 . o 1st subject area
existing systems
= Ei%
O=0
day 3 @%[j % Ej% more subjects
existing systems C
% % @ The warehouse
starts to become
day 4 @g@ (— % Ifj% X fully populated
existing systems % —J % 2:‘::;0;:S:nt?s :ue
— '
The warehouse
% lfj% % grows and the
080 — ? .
day 5 O % —— departmental
existing systems % — % \%A level of processing
) = o starts to blossom.
More data is
5 Sjo(Ifj% % ‘%@ % poured into the
00 5 data warehouse
day 6 d SX) C 3 —
’ operational % (— 9 \% X gggn?g:‘hnow
— $™SO
—J focuses on
g O departmental data
since it is easier to
get to.
g 5%
@@@ ﬁ% %Ej% % % @% /% 5
day n @ /
y operational % 3 — ‘% % T % SX)

—l ey

Figure 2.10 Day 1-day n phenomenon.

x %@\% 8

The Data Warehouse Environment 43

On day 6, the land rush to departmental systems takes place. It is cheaper,
faster, and easier to get departmental data than it is to get data from the data
warehouse. Soon end users are weaned from the detail of data warehouse to
departmental processing.

On day n, the architecture is fully developed. All that is left of the original set of
production systems is operational processing. The warehouse is full of data.
There are a few direct users of the data warehouse. There are a lot of depart-
mental databases. Most of the DSS analytical processing occurs at the depart-
mental level because it is easier and cheaper to get the data needed for
processing there.

Of course, evolution from day 1 to day n takes a long time. The evolution does
not happen in a matter of days. Several years is the norm. During the process of
moving from day 1 to day n the DSS environment is up and functional.

Note that the spider web seems to have reappeared in a larger, more grandiose
form. Such is not the case at all, although the explanation is rather complex.
Refer to “The Cabinet Effect,” in the May 1991 edition of Data Base Program-
ming Design, for an in-depth explanation of why the architected environment
is not merely a recreation of the spider web environment.

The day 1-day n phenomenon described here is the ideal way to get to the data
warehouse. There are many other paths. One such path is through the building
of data marts first. This path is short sighted and leads to a great deal of waste.

Granularity

The single most important aspect of design of a data warehouse is the issue of
granularity. Indeed, the issue of granularity permeates the entire architecture
that surrounds the data warehouse environment. Granularity refers to the level
of detail or summarization of the units of data in the data warehouse. The more
detail there is, the lower the level of granularity. The less detail there is, the
higher the level of granularity.

For example, a simple transaction would be at a low level of granularity. A sum-
mary of all transactions for the month would be at a high level of granularity.

Granularity of data has always been a major design issue. In early operational
systems, granularity was taken for granted. When detailed data is being
updated, it is almost a given that data be stored at the lowest level of granular-
ity. In the data warehouse environment, though, granularity is not assumed. Fig-
ure 2.11 illustrates the issues of granularity.

44

granularity—

the level of detail

high level of detail— low level of detail—
low level of granularity high level of granularity
EXAMPLE: EXAMPLE:

the details of every the summary of phone
phone call made by a calls made by a
customer for a month customer for a month

(a)

partitioning of data

e the splitting of data into small units
¢ done at the application level or the
DBMS level

500
500
L J o0

difficult to manage

easy to manage

Figure 2.11 Major design issues of the data warehouse: granularity, partitioning, and
proper design.

Granularity is the major design issue in the data warehouse environment
because it profoundly affects the volume of data that resides in the data ware-
house and the type of query that can be answered. The volume of data in a ware-
house is traded off against the level of detail of a query.

In almost all cases, data comes into the data warehouse at too high a level of
granularity. This means that the developer must spend a lot of resources break-
ing the data apart. Occasionally, though, data enters the warehouse at too low a
level of granularity. An example of data at too low a level of granularity is the
Web log data generated by the Web-based ebusiness environment. Web log
clickstream data must be edited, filtered, and summarized before its granular-
ity is fit for the data warehouse environment.

The Data Warehouse Environment 45

The Benefits of Granularity

Many organizations are surprised to find that data warehousing provides an
invaluable foundation for many different types of DSS processing. Organiza-
tions may build a data warehouse for one purpose, but they discover that it can
be used for many other kinds of DSS processing. Although infrastructure for
the data warehouse is expensive and difficult to build, it has to be built only
once. After the data warehouse has been properly constructed, it provides the
organization with a foundation that is extremely flexible and reusable.

The granular data found in the data warehouse is the key to reusability, because
it can be used by many people in different ways. For example, within a corpo-
ration, the same data might be used to satisfy the needs of marketing, sales, and
accounting. All three departments look at the basic same data. Marketing may
want to see sales on a monthly basis by geographic district, sales may want to
see sales by salesperson by sales district on a weekly basis, and finance may
want to see recognizable revenue on a quarterly basis by product line. All of
these types of information are closely related, yet slightly different. With a data
warehouse, the different organizations are able to look at the data as they wish
to see it.

Looking at the data in different ways is only one advantage of having a solid
foundation. A related benefit is the ability to reconcile data, if needed. Once
there is a single foundation on which everyone relies, if there is a need to
explain a discrepancy in analyses between two or more departments, then rec-
onciliation is relatively simple.

Another related benefit is flexibility. Suppose that marketing wishes to alter
how it looks at data. Having a foundation in place allows this to be accom-
plished easily.

Another benefit of granular data is that it contains a history of activities and
events across the corporation. And the level of granularity is detailed enough
that the data can be reshaped across the corporation for many different needs.

But perhaps the largest benefit of a data warehouse foundation is that future
unknown requirements can be accommodated. Suppose there is a new require-
ment to look at data, or the state legislature passes a new law, or OPEC changes
its rules for oil allocation, or the stock market crashes. There is a constant
stream of new requirements for information because change is inevitable. With
the data warehouse in place, the corporation can easily respond to change.
When a new requirement arises and there is a need for information, the data
warehouse is already available for analysis, and the organization is prepared to
handle the new requirements.

LMl CHAPTER2

An Example of Granularity

Figure 2.12 shows an example of the issues of granularity. The left side shows a
low level of granularity. Each activity—in this case, a phone call—is recorded
in detail. At the end of the month, each customer has, on average, 200 records
(one for each recorded phone call throughout the month) that require about
40,000 bytes collectively.

The right side of the figure shows a higher level of granularity. A high level of
detail refers to a low level of granularity. A low level of detail refers to a high
level of granularity. The data shown in Fig 2.12 is at a high level of granularity.
It represents the summary information stet. Each record summarizes one
month’s activity for one customer, which requires about 200 bytes.

granularity
high level of detail low level of detail
EXAMPLE: EXAMPLE:
the details of every phone the summary of phone
call made by a customer for calls made by a customer
a month for a month
40,000 bytes per month 200 bytes
200 records per month 1 record per month
01 activityrec. 01 activityrec.
02 date 02 month
02 time 02 cumcalls
02 to whom 02 avglength
02 op assisted 02 cumlongdistance
02 call completed 02 cuminterrupted
02 time completed | 1 e e
02 long distance
02 cellular

02 special rate

Figure 2.12 Determining the level of granularity is the most important design issue in
the data warehouse environment.

The Data Warehouse Environment 47

It is obvious that if space is a problem in a data warehouse (and volume of data
is always the first and major issue in the data warehouse), a high level of gran-
ularity is a much more efficient way of representing data than a representation
using a low level of granularity.

Not only are many fewer bytes of data required with a higher level of granular-
ity, but fewer index entries are needed. But the volume of data and the issue of
raw space are not the only relevant issues. The amount of processing power
that needs to be used in the face of a large volume of data in order to access the
data is a factor as well.

There is, then, a very good case for the compaction of data in a data warehouse.
When data is compacted, significant savings can be realized in the amount of
DASD used, the number of index entries required, and the processor resources
required to manipulate data.

Another aspect to the compaction of data occurs when the level of granularity
is raised. Figure 2.13 demonstrates the trade-off. As the level of granularity of
data rises, there is a corresponding loss in the ability to answer queries using
the data. Put another way, with a very low level of granularity, you can answer
practically any query. But a high level of granularity limits the number of ques-
tions that the data can handle.

Another consideration in designing granularity is determining which architec-
tural entities will feed off the data warehouse. Each entity has its own unique
considerations. The data warehouse must be designed to feed the lowest level
of granularity needed by any architectural entity.

To illustrate the effect of granularity on the ability to do queries, in Figure 2.13,
the following query is made: “Did Cass Squire call his girlfriend in Boston last
week?”

With a low level of granularity, the query can be answered. It may take a lot of
resources to thumb through a lot of records, but at the end of the day, whether
Cass called his girlfriend in Boston last week can be determined.

But with a high level of detail, there is no way to definitively answer the ques-
tion. If all that is kept about Cass Squire in the data warehouse is the total num-
ber of calls that he made for a given week or month, whether one of those calls
went to Boston cannot be determined.

When doing DSS processing in the data warehouse environment, examining
only a single event is rare. A collective view of data is much more common. To
achieve a collective view requires looking at a large number of records.

For example, suppose the following collective query is made: “On the average,
how many long-distance phone calls did people from Washington make last
month?”

48

granularity
high level of detail low level of detail
EXAMPLE: EXAMPLE:
the details of every phone the summary of phone
call made by a customer for calls made by a customer
a month for a month
“Did Cass Squire call his girlfriend
in Boston last week?”
* Can be answered, even though e Cannot be answered in any case
some amount of digging is The detail has gone.
required.
But looking for a single record is
a very uncommon event.
“On the average, how many long-
distance phone calls did people
from Washington make last month?”
search through 175,000,000 search through 1,750,000
records, doing 45,000,000 I/Os records, doing 450,000 1/Os

Figure 2.13 The level of granularity has a profound effect both on what questions can
be answered and on what resources are required to answer a question.

This type of query is normal in a DSS environment. Of course, it can be
answered by both the high level and the low level of granularity. In answering
it, though, there is a tremendous difference in the resources used. A low level of
granularity requires sorting through each record, because many resources are
required when using very detailed data.

But using the high level of granularity, the data is much more compact and can
provide an answer relatively quickly. If it contains sufficient detail, data with a
high level of granularity is much more efficient to use.

The Data Warehouse Environment 49

Figure 2.14 shows the trade-off in determining the level of data granularity to
use. This trade-off must be considered very carefully at the outset of designing
and constructing the data warehouse.

Dual Levels of Granularity

Most of the time, there is a great need for efficiency in storing and accessing
data, and for the ability to analyze data in great detail. (In other words, the orga-
nization wants to have its cake and eat it, too!) When an organization has lots of
data in the warehouse, it makes eminent sense to consider two (or more) levels
of granularity in the detailed portion of the data warehouse. In fact, there is
such a need for more than one level of granularity that a dual level of granular-
ity design should be the default for almost every shop. Figure 2.15 shows two
levels of granularity at the detailed level of the data warehouse.

Called a dual level of granularity, the design shown in Figure 2.15—a phone
company—fits the needs of most shops. There is a tremendous amount of detail
at the operational level. Most of this detail is needed for the billing systems. Up
to 30 days of detail is stored in the operational level.

The data warehouse in this example contains two types of data-lightly summa-
rized data and “true archival” detail data. The data in the data warehouse can go
back 10 years. The data that emanates from the data warehouse is “district”
data that flows to the different districts of the telephone company. Each district

high level of detalil low level of detail
level of detail—answer flexibility—small enough
any question volumes to be able to be
manipulated
large volumes of data small volumes

Figure 2.14 The trade-off with granularity is so stark that for most organizations the
best solution is some form of multiple levels of granularity.

a telephone company
dual levels of granularity

=

¢ 30 days of detailed 10 years of district by analytical
call history call history district activity processing
e other customer
activity

lightly summarized

managing the volumes
of data at the data

true archival warehouse level

Figure 2.15 The volume of data is such that most organizations need to have two levels
of granularity in the data warehouse.

then analyzes its data independently from other districts. Much heuristic ana-
lytical processing occurs at the individual level.

A light summarization data is detailed data that has been summarized only to a
very small extent. For example, phone call information may be summarized by
the hour. Or bank checking information may be summarized by the day.
Figure 2.16 shows such a summarization.

As data is passed from the operational, 30-day store of data, it is summarized,
by customer, into fields that are likely to be used for DSS analysis. The record
for J Jones shows the number of calls made per month, the average length of
each call, the number of long-distance calls made, the number of operator-
assisted calls, and so forth.

There is significantly less volume of data in the lightly summarized database
than there is in the detailed database. Of course, there is a limit to the level of
detail that can be accessed in the lightly summarized database.

The Data Warehouse Environment 51

lightly summarized data

30 days’ detail lightly summarized
J Jones April
April 12 6:01 pm to 6:12 pm J Jones
415-566-9982 operator assisted number of calls - 45
April 12 6:15 pm to 6:16 pm avg length of call - 14 minutes
415-334-8847 long distance number of long distance calls - 18
April 12 6:23 pm to 6:38 pm number of operator assisted calls - 2
408-223-7745 number of incomplete calls - 1
April 13 9:12 am to 9:23 am
408-223-7745
April 13 10:15 am to 10:21 am

408-223-7745 operator assisted number of bytes required to house a
April 15 11:01 am to 11:21 am record—225

415-964-4738

April 15 11:39 am to 12:01 pm
703-570-5770 incomplete

April 15 12:10 pm to 12:46 pm
703-841-5770 wrong number
April 16 12:34 pm to 12:56 pm
415-964-3130

For a single customer for a month, an
average of 45,000 bytes are required
to house 200 records.

Figure 2.16 With light summarization data, large quantities of data can be represented
compactly.

The second tier of data in the data warehouse—the lowest level of granular-
ity—is stored in the true archival level of data, as shown in Figure 2.17.

At the true archival level of data, all the detail coming from the operational envi-
ronment is stored. There is truly a multitude of data at this level. For that rea-
son, it makes sense to store the data on a medium such as magnetic tape or
another bulk storage medium because the volume of data is so large.

By creating two levels of granularity in the data warehouse, the DSS architect
has killed two birds with one stone—most DSS processing is performed against

52

April

J Jones

number of calls - 45

avg length of call - 14 minutes
number of long distance calls - 18
number of operator assisted calls - 2
number of incomplete calls - 1

lightly

summarized
95% or more of DSS
processing done here
J Jones
April 12 6:01 pm to 6:12 pm
4157566—9982 operator assisted] \ 5% or less of DSS
April 12 6:15 pm to 6:16 pm true archival .
415-334-8847 long distance processing done here
April 12 6:23 pm to 6:38 pm
408-223-7745 e time consuming

April 13 9:12 am to 9:23 am
408-223-7745

April 13 10:15 am to 10:21 am ° $$$$
408-223-7745 operator assisted
April 15 11:01 am to 11:21 am
415-964-4738

April 15 11:39 am to 12:01 pm
703-570-5770 incomplete

April 15 12:10 pm to 12:46 pm
703-841-5770 wrong number
April 16 12:34 pm to 12:56 pm
415-964-3130

e complex

Figure 2.17 Dual levels of granularity allow you to process the majority of requests effi-
ciently and answer any question that can be answered.

the lightly summarized data, where the data is compact and efficiently
accessed. When some greater level of detail is required—5 percent of the time
or less—there is the true archival level of data. It is expensive, cumbersome,
and complex to access data at the true archival level of granularity, but if there
it is there when necessary.

If a pattern of searching the true archival level of data develops over time, the
designer may want to create some new fields of data at the lightly summarized
level, so that most of the processing can occur there.

Because of the costs, efficiencies, ease of access, and ability to answer any
query that can be answered, the dual level of data is the best architectural
choice for the detailed level of the data warehouse for most shops. A single

The Data Warehouse Environment 53

level of data should only be attempted when a shop has a relatively small
amount of data in the data warehouse environment.

Exploration and Data Mining

The granular data found in the data warehouse supports more than data marts.
It also supports the processes of exploration and data mining. Exploration and
data mining take masses of detailed, historical data and examine it for previ-
ously unknown patterns of business activity.

The data warehouse contains a very useful source of data for the explorer and
data miner. The data found in the data warehouse is cleansed, integrated, orga-
nized. And the data is historical. This foundation is precisely what the data
miner and the explorer need in order to start the exploration and data mining
activity. It is noteworthy that while the data warehouse provides an excellent
source of data for the miner and the explorer, the data warehouse is often not
the only source. External data and other data can be freely mixed with data
warehouse data in the course of doing exploration and mining. Refer to the
book Exploration Warehousing (Wiley, 2000) for more information on this
topic.

Living Sample Database

Occasionally, it is necessary to create a different kind of data warehouse. Some-
times there is simply too much data for normal access and analysis. When this
happens, special design approaches may be used.

An interesting hybrid form of a data warehouse is the living sample database,
which is useful when the volume of data in the warehouse has grown very large.
The living sample database refers to a subset of either true archival data or
lightly summarized data taken from a data warehouse. The term “living” stems
from the fact that it is a subset—a sample—of a larger database, and the term
“sample” stems from the fact that periodically the database needs to be
refreshed. Figure 2.18 shows a living sample database.

In some circumstances (for example, statistical analysis of a population or pro-
filing), a living sample database can be very useful and can save huge amounts
of resources. But there are some severe restrictions, and the designer should
not build such a database as part of the data warehouse unless he or she is
aware of the limitations.

54

data warehouse

“Of all of our policyholders, how many are
males over the age of 35 who are married
and who have college degrees?”

living sample data

* a fraction of data in the warehouse

* used for very efficient formulation of a query

e cannot be used for general purpose analysis—
can only be used for statistical analysis

Figure 2.18 Living simple data-another way of changing the granularity of data.

A living sample database is not a general-purpose database. If you wanted to
find out whether J Jones is a customer, you would not look into a living sample
database for that information. It is absolutely possible for J Jones to be a cus-
tomer but not be on record in the living sample. These databases are good for
statistical analysis and looking at trends, and can offer some very promising
results when data must be looked at collectively. They are not at all useful for
dealing with individual records of data.

One of the important aspects of the building a living sample database is how the
data is loaded, which determines the amount of data in the database and how
random the data will be. Consider how a living sample database is typically
loaded. An extract/selection program rummages through a large database,
choosing every one-hundredth or every one-thousandth record. The record is
then shipped to the living sample database. The resulting living sample data-
base, then, is one-hundredth or one-thousandth the size of the original data-
base. The query that operates against this database then uses one-hundredth or
one-thousandth the resources as a query that would operate directly against the
full data warehouse.

The selection of records for inclusion into the living sample is usually random.
On occasion, a judgment sample is taken, in which a record must meet certain
criteria in order to be selected. The problem with judgment samples is that they
almost always introduce bias into the living sample data. The problem with a
random selection of data is that it may not produce statistical significance. But
however it’s done, a subset of the data warehouse is selected for the living sam-
ple. The fact that any given record is not found in the living sample database

The Data Warehouse Environment 55

means nothing because the processing that operates against the living sample
does not require every record in the data warehouse to be in the living sample.

The greatest asset of a living sample database is that it is very efficient to
access. Because its size is a fraction of the larger database from which it was
derived, it is correspondingly much more efficient to access and analyze.

Put another way, suppose an analyst takes 24 hours to scan and analyze a large
database. It may take as little as 10 minutes to scan and analyze a living sample
database. In doing heuristic analysis, the turnaround time is crucial to the
analysis that can be done. In heuristic analysis, the analyst runs a program,
studies the results, reformulates the program, and runs it again. If it takes 24
hours to execute the program, the process of analysis and reformulation is
greatly impaired (not to mention the resources required to do the reformula-
tion).

With a living sample database small enough to be scanned in 10 minutes, the
analyst can go through the iterative process very quickly. In short, the produc-
tivity of the DSS analyst depends on the speed of turning around the analysis
being done.

One argument claims that doing statistical analysis yields incorrect answers.
For example, an analyst may run against a large file of 25 million records to
determine that 56.7 percent of the drivers on the road are men. Using a living
sample database, the analyst uses 25,000 records to determine that 55.9 percent
of the drivers on the road are men. One analysis has required vastly more
resources than the other, yet the difference between the calculations is very
small. Undoubtedly, the analysis against the large database was more accurate,
but the cost of that accuracy is exorbitant, especially in the face of heuristic
processing, where iterations of processing are the norm.

If very high degrees of accuracy are desired, a useful technique is to formulate
the request and go through the iterative processing on the living sample data-
base. In doing so, the DSS analyst quickly formulates the request. Then, after
several iterations of analysis have been done, when the request is understood,
it is run one final time against the large database.

Living sample data is just one more way of changing the level of granularity in
the data warehouse to accommodate DSS processing.

Partitioning as a Design Approach

A second major design issue of data in the warehouse (after that of granularity)
is that of partitioning (see Figure 2.11b). Partitioning of data refers to the

breakup of data into separate physical units that can be handled independently.
In the data warehouse, the issues surrounding partitioning do not focus on
whether partitioning should be done but how it should be done.

It is often said that if both granularity and partitioning are done properly, then
almost all other aspects of the data warehouse design and implementation
come easily. If granularity is not handled properly and if partitioning is not
designed and implemented carefully, then no other aspects of design really
matter.

Proper partitioning can benefit the data warehouse in several ways:

m Loading data
m Accessing data
m Archiving data
m Deleting data
m Monitoring data
m Storing data

Partitioning data properly allows data to grow and to be managed. Not parti-
tioning data properly does not allow data to be managed or to grow gracefully.

Of course, there are other important design aspects of the data warehouse that
will be discussed in later chapters.

Partitioning of Data

In the data warehouse environment, the question is not whether current detail
data will be partitioned but how current detail data will be partitioned. Fig-
ure 2.19 illustrates partitioning.

The purpose of partitioning of current detail data is to break data up into small,
manageable physical units. Why is this so important? The operations staff and
the designer have more flexibility in managing small physical units of data than
large ones.

Following are some of the tasks that cannot easily be performed when data
resides in large physical units:

m Restructuring
m [ndexing
m Sequential scanning, if needed

m Reorganization

The Data Warehouse Environment 57

m Recovery
m Monitoring
In short, one of the essences of the data warehouse is the flexible access of

data. Large masses of data defeat much of the purpose of the data warehouse.
Therefore, all current-detail data warehouse data will be partitioned.

Data is partitioned when data of a like structure is divided into more than one
physical unit of data. In addition, any given unit of data belongs to one and only

one partition.
partitioning of data
Small units of data can be:
Ej e restructured

O

* indexed
Ej * sequentially scanned, if needed
Ej * reorganized
* recovered
* monitored

LD
D

—
©
o
©

—_
©
73]
4]

Independently managed units of data
can have different definitions.

-
(o]
©
o

./

ﬂ(_\@

-
©
©
—

_k
(e}
®
N

/
/
/ @
/
/
processing)/
complex A / Ej Ej
/
@ /
/ \
/
/

/ processing
' complex B

Figure 2.19 Independently managed partitions of data can be sent to different process-
ing complexes with no other system considerations.

Data can be divided by many criteria, such as:
By date
By line of business

-

-

m By geography
m By organizational unit
-

By all of the above

The choices for partitioning data are strictly up to the developer. In the data
warehouse environment, however, it is almost mandatory that one of the crite-
ria for partitioning be by date.

As an example of how a life insurance company may choose to partition its
data, consider the following physical units of data:
2000 health claims

2001 health claims

2002 health claims

1999 life claims

2000 life claims

2001 life claims

2002 life claims

2000 casualty claims

2001 casualty claims

2002 casualty claims

The insurance company has used the criteria of date—that is, year—and type of
claim to partition the data.

Partitioning can be done in many ways. One of the major issues facing the data
warehouse developer is whether partition at the system level or at the applica-
tion level. Partitioning at the system level is a function of the DBMS and the
operating system to some extent. Partitioning at the application level is done by
application code and is solely and strictly controlled by the developer and the
programmer, so the DBMS and the system know of no relation between one
partition and the other.

As a rule, it makes sense to partition data warehouse data at the application
level. There are some important reasons for this. The most important is that at
the application level there can be a different definition of data for each year.
There can be 2000’s definition of data and there can be 2001’s definition of data,

The Data Warehouse Environment 59

which may or may not be the same thing. The nature of data in a warehouse is
the collection of data over a long period of time.

When the partitioning is done at the system level, the DBMS inevitably requires
that there be a single definition of data. Given that the data warehouse holds
data for a long period of time—up to 10 years—and given that the definition
regularly changes, it does not make sense to allow the DBMS or the operating
system to dictate that there should be a single definition of data.

By allowing the partitioning of data to be managed at the application level rather
than the DBMS level, data can be moved from one processing complex to
another with impunity. When the workload and volume of data become a real
burden in the data warehouse environment, this feature may be a real advantage.

The acid test for the partitioning of data is to ask the question, “Can an index be
added to a partition with no discernible interruption to other operations?” If an
index can be added at will, then the partition is fine enough. If an index cannot
be added easily, then the partition needs to be broken down more finely.

Structuring Data in the Data Warehouse

So far, we haven’t gone into what the data structures found in the data ware-
house really look like. Many kinds of structures are found in the data ware-
house. We will look at some of the more common ones now.

Perhaps the simplest and most common data structure found in the data ware-
house is the simple cumulative structure, shown in Figure 2.20.

Figure 2.20 shows the daily transactions being transported from the operational
environment. After that, they are summarized into data warehouse records,
which may be by customer, by account, or by any subject area in the data ware-
house. The transactions in Figure 2.20 are summarized by day. In other words,
all daily activity for a customer for an account are totaled and passed into the
data warehouse on a day-by-day basis.

Figure 2.21 shows a variation of the simple daily accumulation called the stor-
age of rolling summary data.

The data passes from the operational environment to the data warehouse envi-
ronment as it did previously. In rolling summary data, however, the data is
entered into a very different structure. For the first seven days of the week,
activity is summarized into seven daily slots. On the eighth day, the seven daily
slots are added together and placed into the first weekly slot. Then the daily
totals are added into the first daily slot.

simple cumulative data

daily
transactions

operational data daily
|:| summary
[[N B
Jan1 Jan2 Jan3...
[[N B
Feb1 Feb2 Feb3...
[[N B

Mar1 Mar2 Mar3...

Figure 2.20 The simplest form of data in the data warehouse is the data that has been
accumulated on a record-by-record basis, called simple cumulative data.

daily
transactions

operational data |:| daily
summary

[N By L]

day1 day2 day3 ... day7

[R HN R]
week 1 week2 week3 ... week5
[I R I]
moni mon2 mon3 ... moni2
I R N B]
year1 year2 year3 ... yearn

Figure 2.21 A variation of the cumulative file is the rolling summary file.

The Data Warehouse Environment 61

At the end of the month, the weekly slots are added together and placed in the
first monthly slot. Then the weekly slots are reset to zero. At the end of the
year, the monthly slots are added together, and the first yearly slot is loaded.
Then the monthly slots are reset to zero.

A rolling summary data structure handles many fewer units of data than does a
simple cumulative structuring of data. A comparison of the advantages and the
disadvantages of rolling summary versus simple cumulative structuring of data
is shown in Figure 2.22.

Another possibility for the structuring of data warehouse data is the simple
direct file, shown in Figure 2.23.

Figure 2.23 shows that data is merely pulled from the operational environment
to the data warehouse environment; there is no accumulation. In addition, the
simple direct file is not done on a daily basis. Instead, it is done over a longer
period of time, such as a week or a month. As such, the simple direct file repre-
sents a snapshot of operational data taken as of one instant in time.

A continuous file can be created from two or more simple direct files, as shown
in Figure 2.24. Two snapshots—one from January and one from February—are

rolling summary data

L1 L1 L]

day1 day2 day3 ... day7
L1 CJ [(1] « very compact
week 1 week2 week3 ... week5 esome loss of detail
¢ the older data gets, the less detail
O O O . o ket ’
moni mon2 mon3 ... mon 12
L1 [0 [(1]
year1 year2 vyear3 ... yearn
simple cumulative data
L1 1 [
Jan1 Jan2 Jan3... * much storage required
* no loss of detail
I R N R e much processing to do anything
Feb1 Feb2 Feb3... with data
L1 1 [

Mar1 Mar2 Mar3...

Figure 2.22 Comparing simple cumulative data with rolling summary data.

January Customers

J Adams 123 Main Street
* P Anderson 456 High Street
K Appleby 10 A Street
L Azimoff 64 N Ranch Rd

operational data

Figure 2.23 Creating a continuous file from direct files.

January Customers February customers

J Adams 123 Main Street
W Abraham 12 Hwy 9

P Anderson 1455 Tincup Ct
K Appleby 10 A Street

L Azimoff 64 N Ranch Rd

J Adams 123 Main Street
P Anderson 456 High Street
K Appleby 10 A Street

L Azimoff 64 N Ranch Rd

J Adams Jan-pres 123 Main Street
W Abraham Feb-pres 12 Hwy 9

P Anderson Jan-Jan 456 High Street
P Anderson Feb-pres 1455 Tincup Ct
K Appleby Jan-pres 10 A Street

L Azimoff Jan-pres 64 N Ranch Rd

Figure 2.24 Creating a continuous file from direct files.

merged to create a continuous file of data. The data in the continuous file rep-
resents the data continuously from the first month to the last.

Of course, a continuous file can be created by appending a snapshot of data
onto a previous version of the continuous file, as shown in Figure 2.25.

continuous file

The Data Warehouse Environment 63

Adams
Abraham
Anderson
Anderson
Appleby
Azimoff

B = ™™= 4

Jan-pres
Feb-pres
Jan-Jan

Feb-pres
Jan-pres
Jan-pres

123 Main Street
12 Hwy 9

456 High Street
1455 Tincup Ct
10 A Street

64 N Ranch Rd

March customers

J Adams

W Abraham
K Appleby
L Azimoff

123 Main Street
12 Hwy 9

10 A Street

64 N Ranch Rd

Adams

J
w
P Anderson Jan—-Jan
P
K
L

Jan-pres

Abraham Feb-pres

Anderson Feb-Feb
Appleby Jan-pres
Azimoff Jan-pres

123 Main Street
12 Hwy 9

456 High Street
1455 Tincup Ct
10 A Street

64 N Ranch Rd

Figure 2.25 Continuous files can be created from simple direct files, or they may have

simple direct files appended to them.

There are many more ways to structure data within the data warehouse. The

most common are these:

= Simple cumulative

m Rolling summary

m Simple direct

m Continuous

At the key level, data warehouse keys are inevitably compounded keys. There
are two compelling reasons for this:

m Date—year, year/month, year/month/day, and so on—is almost always a
part of the key.

m Because data warehouse data is partitioned, the different components of
the partitioning show up as part of the key.

(M} cHAPTER2

Data Warehouse: The Standards Manual

The data warehouse is relevant to many people-managers, DSS analysts, devel-
opers, planners, and so forth. In most organizations, the data warehouse is new.
Accordingly, there should be an official organizational explanation and descrip-
tion of what is in the data warehouse and how the data warehouse can be used.

Calling the explanation of what is inside the data warehouse a “standards man-
ual” is probably deadly. Standards manuals have a dreary connotation and are
famous for being ignored and gathering dust. Yet, some form of internal publi-
cation is a necessary and worthwhile endeavor.

The kinds of things the publication (whatever it is called!) should contain are
the following:

m A description of what a data warehouse is

m A description of source systems feeding the warehouse
m How to use the data warehouse

How to get help if there is a problem

Who is responsible for what

The migration plan for the warehouse

How warehouse data relates to operational data

How to use warehouse data for DSS

When not to add data to the warehouse

What kind of data is not in the warehouse

A guide to the meta data that is available

What the system of record is

Auditing and the Data Warehouse

An interesting issue that arises with data warehouses is whether auditing can
be or should be done from them. Auditing can be done from the data ware-
house. In the past there have been a few examples of detailed audits being per-
formed there. But there are many reasons why auditing—even if it can be done
from the data warehouse—should not be done from there. The primary reasons
for not doing so are the following:

m Data that otherwise would not find its way into the warehouse suddenly
has to be there.

The Data Warehouse Environment 65

m The timing of data entry into the warehouse changes dramatically when
auditing capability is required.

m The backup and recovery restrictions for the data warehouse change dras-
tically when auditing capability is required.

m Auditing data at the warehouse forces the granularity of data in the ware-
house to be at the very lowest level.

In short, it is possible to audit from the data warehouse environment, but due
to the complications involved, it makes much more sense to audit elsewhere.

Cost Justification

Cost justification for the data warehouse is normally not done on an a priori,
return-on-investment (ROI) basis. To do such an analysis, the benefits must be
known prior to building the data warehouse.

In most cases, the real benefits of the data warehouse are not known or even
anticipated before construction begins because the warehouse is used differ-
ently than other data and systems built by information systems. Unlike most
information processing, the data warehouse exists in a realm of “Give me what
I say I want, then I can tell you what I really want.” The DSS analyst really can-
not determine the possibilities and potentials of the data warehouse, nor how
and why it will be used, until the first iteration of the data warehouse is avail-
able. The analyst operates in a mode of discovery, which cannot commence
until the data warehouse is running in its first iteration. Only then can the DSS
analyst start to unlock the potential of DSS processing.

For this reason, classical ROI techniques simply do not apply to the data ware-
house environment. Fortunately, data warehouses are built incrementally. The
first iteration can be done quickly and for a relatively small amount of money.
Once the first portion of the data warehouse is built and populated, the analyst
can start to explore the possibilities. It is at this point that the analyst can start
to justify the development costs of the warehouse.

As a rule of thumb, the first iteration of the data warehouse should be small
enough to be built and large enough to be meaningful. Therefore, the data ware-
house is best built a small iteration at a time. There should be a direct feedback
loop between the warehouse developer and the DSS analyst, in which they are
constantly modifying the existing warehouse data and adding other data to the
warehouse. And the first iteration should be done quickly. It is said that the ini-
tial data warehouse design is a success if it is 50 percent accurate.

Typically, the initial data warehouse focuses on one of these functional areas:

m Finance
m Marketing

m Sales

Occasionally, the data warehouse’s first functional area will focus on one of
these areas:

m Engineering/manufacturing

m Actuarial interests

Justifying Your Data Warehouse

There is no getting around the fact that data warehouses cost money. Data,
processors, communications, software, tools, and so forth all cost money. In
fact, the volumes of data that aggregate and collect in the data warehouse go
well beyond anything the corporation has ever seen. The level of detail and the
history of that detail all add up to a large amount of money.

In almost every other aspect of information technology, the major investment
for a system lies in creating, installing, and establishing the system. The ongo-
ing maintenance costs for a system are miniscule compared to the initial costs.
However, establishing the initial infrastructure of the data warehouse is not the
most significant cost—the ongoing maintenance costs far outweigh the initial
infrastructure costs. There are several good reasons why the costs of a data
warehouse are significantly different from the cost of a standard system:

m The truly enormous volume of data that enters the data warehouse.

m The cost of maintaining the interface between the data warehouse and the
operational sources. If the organization has chosen an extract/transfer/load
(ETL) tool, then these costs are mitigated over time; if an organization has
chosen to build the interface manually, then the costs of maintenance sky-
rocket.

m The fact that a data warehouse is never done. Even after the initial few
iterations of the data warehouse are successfully completed, adding more
subject areas to the data warehouse is an ongoing need.

Cost of Running Reports

How does an organization justify the costs of a data warehouse before the data
warehouse is built? There are many approaches. We will discuss one in depth
here, but be advised that there are many other ways to justify a data warehouse.

The Data Warehouse Environment 67

We chose this approach because it is simple and because it applies to every
organization. When the justification is presented properly, it is very difficult to
deny the powerful cost justifications for a data warehouse. It is an argument
that technicians and non-technicians alike can appreciate and understand.

Data warehousing lowers the cost of information by approximately two orders
of magnitude. This means that with a data warehouse an organization can
access a piece of information for $100; an organization that does not have a data
warehouse can access the same unit of information for $10,000.

How do you show that data warehousing greatly lowers the cost of information?
First, use a report. This doesn’t necessarily need to be an actual report. It can be
a screen, a report, a spreadsheet, or some form of analytics that demonstrates
the need for information in the corporation. Second, you should look at your
legacy environment, which includes single or multiple applications, old and new
applications. The applications may be Enterprise Resource Planning (ERP)
applications, non-ERP applications, online applications, or offline applications.

Now consider two companies, company A and company B. The companies are
identical in respect to their legacy applications and their need for information.
The only difference between the two is that company B has a data warehouse
from which to do reporting and company A does not.

Company A looks to its legacy applications to gather information. This task
includes the following:

m Finding the data needed for the report
Accessing the data

Integrating the data

Merging the data

Building the report

]
|
-
]
Finding the data can be no small task. In many cases, the legacy systems are not
documented. There is a time-honored saying: Real programmers don’t do docu-
mentation. This will come back to haunt organizations, as there simply is no
easy way to go back and find out what data is in the old legacy systems and
what processing has occurred there.

Accessing the data is even more difficult. Some of the legacy data is in Infor-
mation Management System (IMS), some in Model 204, some in Adabas. And
there is no IMS, Model 204, and Adabas technology expertise around anymore.
The technology that houses the legacy environment is a mystery. And even if
the legacy environment can be accessed, the computer operations department
stands in the way because it does not want anything in the way of the online
window of processing.

If the data can be found and accessed, it then needs to be integrated. Reports
typically need information from multiple sources. The problem is that those
sources were never designed to be run together. A customer in one system is
not a customer in another system, a transaction in one system is different from
a transaction in another system, and so forth. A tremendous amount of conver-
sion, reformatting, interpretation, and the like must go on in order to integrate
data from multiple systems.

Merging the data is easy in some cases. But in the case of large amounts of data
or in the case of data coming from multiple sources, the merger of data can be
quite an operation.

Finally, the report is built.

How long does this process take for company A? How much does it cost?
Depending on the information that is needed and depending on the size and
state of the legacy systems environment, it may take a considerable amount of
time and a high cost to get the information. The typical cost ranges from
$25,000 to $1 million. The typical length of time to access data is anywhere from
1 to 12 months.

Now suppose that an company B has built a data warehouse. The typical cost
here ranges from $500 to $10,000. The typical length of time to access data is
one hour to a half day. We see that company B’s costs and time investment for
retrieving information are much lower. The cost differential between company
A and company B forms the basis of the cost justification for a data warehouse.
Data warehousing greatly lowers the cost of information and accelerates the
time required to get the information.

Cost of Building the Data Warehouse

The astute observer will ask, what about the cost of building the data ware-
house? Figure 2.26 shows that in order to generate a single report for company
B, it is still necessary to find, access, integrate, and merge the data. These are
the same initial steps taken to build a single report for company A, so there are
no real savings found in building a data warehouse. Actually, building a data
warehouse to run one report is a costly waste of time and money.

But no corporation in the world operates from a single report. Different divi-
sions of even the simplest, smallest corporation look at data differently.
Accounting looks at data one way; marketing looks at data another way; sales
looks at data yet another way; and management looks at data in even another
way. In this scenario, the cost of building the data warehouse is worthwhile. It
is a one-time cost that liberates the information found in the data warehouse.
Whereas each report company A needs is both costly and time-consuming, com-

The Data Warehouse Environment 69

legacy applications

’ report
\iata warehouse

1 - find the data

2 - access the data 5 - build the report
___ 3-integrate the data

4 - merge the data

Figure 2.26 \Where the costs and the activities are when a data warehouse is built.

pany B uses the one-time cost of building the data warehouse to generate mul-
tiple reports (see Figure 2.27).

But that expense is a one-time expense, for the most part. (At least the initial
establishment of the data warehouse is a one-time expense.) Figure 2.27 shows
that indeed data warehousing greatly lowers the cost of information and greatly
accelerates the rate at which information can be retrieved.

Would company A actually even pay to generate individual reports? Probably
not. Perhaps it would pay the price for information the first few times. When it
realizes that it cannot afford to pay the price for every report, it simply stops
creating reports. The end user has the attitude, “I know the information is in my
corporation, but I just can’t get to it.” The result of the high costs of getting
information and the length of time required is such that end users are frustrated
and are unhappy with their IT organization for not being able to deliver
information.

Data Homogeneity/Heterogeneity

At first glance, it may appear that the data found in the data warehouse is homo-
geneous in the sense that all of the types of records are the same. In truth, data
in the data warehouse is very heterogeneous. The data found in the data ware-
house is divided into major subdivisions called subject areas. Figure 2.28 shows
that a data warehouse has subject areas of product, customer, vendor, and
transaction.

The first division of data inside a data warehouse is along the lines of the major
subjects of the corporation. But with each subject area there are further subdi-
visions. Data within a subject area is divided into tables. Figure 2.29 shows this
division of data into tables for the subject area product.

70

company A
’\’ | .k $1,000,000
d? F $500,000
q_(>' F $2,000,000

[% $2,500,000
[E $1,000,000

company B

V $250

’\ /,[% $10,000

-~ B 1000
qﬁ $2,000,000 &= s200
[E $3,000

Figure 2.27 Multiple reports make the cost of the data warehouse worthwhile.

product customer

0000000DQO000000
0000000000000
00000000CO000000
0000000PTO000000
0000000P00000000
00000000000 0000
000000000000 0000
00000000Q0000000 | yvendor
0000000000000000
000000000000 0000
00000000C0000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

transaction

Figure 2.28 The data in the different parts of the data warehouse are grouped by
subject area.

The Data Warehouse Environment 71

vendor
product product
description
0000000P00 grct)duct ______
0000000000 ate
8555555p55° location | | order | | =
oo | | preduet | | e
0000000p000 | T product
000000000 | semsssesssas date | | =
0000000000 | wwvesewwsene | | wwr || e
00000000
oot e T
""" product
product ship date
bom number ship amount

bom description

Figure 2.29 Within the product subject area there are different types of tables, but each
table has a common product identifier as part of the key.

Figure 2.29 shows that there are five tables that make up the subject area inside
the data warehouse. Each of the tables has its own data, and there is a common
thread for each of the tables in the subject area. That common thread is the
key/foreign key data element—product.

Within the physical tables that make up a subject area there are further subdi-
visions. These subdivisions are created by different occurrences of data values.
For example, inside the product shipping table, there are January shipments,
February shipments, March shipments, and so forth.

The data in the data warehouse then is subdivided by the following criteria:

m Subject area
m Table

m QOccurrences of data within table

This organization of data within a data warehouse makes the data easily acces-
sible and understandable for all the different components of the architecture
that must build on the data found there. The result is that the data warehouse,
with its granular data, serves as a basis for many different components, as seen
in Figure 2.30.

The simple yet elegant organization of data within the data warehouse environ-
ment seen in Figure 2.30 makes data accessible in many different ways for
many different purposes.

72

OOOOOOOOOOOOOOOO

0000000000000000

._._
Qe
L X]

Fig 2.30 The data warehouse sits at the center of a large framework.

Purging Warehouse Data

Data does not just eternally pour into a data warehouse. It has its own life cycle
within the warehouse as well. At some point in time, data is purged from the
warehouse. The issue of purging data is one of the fundamental design issues
that must not escape the data warehouse designer.

In some senses, data is not purged from the warehouse at all. It is simply rolled
up to higher levels of summary. There are several ways in which data is purged
or the detail of data is transformed, including the following:

The Data Warehouse Environment 73

m Data is added to a rolling summary file where detail is lost.

m Data is transferred to a bulk storage medium from a high-performance
medium such as DASD.

m Data is actually purged from the system.

m Data is transferred from one level of the architecture to another, such as
from the operational level to the data warehouse level.

There are, then, a variety of ways in which data is purged or otherwise trans-
formed inside the data warehouse environment. The life cycle of data—includ-
ing its purge or final archival dissemination—should be an active part of the
design process for the data warehouse.

Reporting and the Architected Environment

It is a temptation to say that once the data warehouse has been constructed all
reporting and informational processing will be done from there. That is simply
not the case. There is a legitimate class of report processing that rightfully
belongs in the domain of operational systems. Figure 2.31 shows where the dif-
ferent styles of processing should be located.

operational data warehouse
operational reporting data warehouse reporting
¢ the line item is of the essence; the ¢ the line item is of little or no use
summary is of little or no once used; the summary or other
importance once used calculation is of primary importance
* of interest to the clerical community « of interest to the managerial
community

Figure 2.31 The differences between the two types of reporting.

(Ml cHAPTER2

Figure 2.31 shows that operational reporting is for the clerical level and focuses
primarily on the line item. Data warehouse or informational processing focuses
on management and contains summary or otherwise calculated information. In
the data warehouse style of reporting, little use is made of line-item, detailed
information, once the basic calculation of data is made.

As an example of the differences between operational reporting and DSS
reporting, consider a bank. Every day before going home a teller must balance
the cash in his or her window. This means that the teller takes the starting
amount of cash, tallies all the day’s transactions, and determines what the day’s
ending cash balance should be. In order to do this, the teller needs a report of
all the day’s transactions. This is a form of operational reporting.

Now consider the bank vice president who is trying to determine how many
new ATMs to place in a newly developed shopping center. The banking vice
president looks at a whole host of information, some of which comes from
within the bank and some of which comes from outside the bank. The bank vice
president is making a long-term, strategic decision and uses classical DSS infor-
mation for his or her decision.

There is then a real difference between operational reporting and DSS report-
ing. Operational reporting should always be done within the confines of the
operational environment.

The Operational Window of Opportunity

In its broadest sense, archival represents anything older than right now. Thus,
the loaf of bread that I bought 30 seconds ago is archival information. The only
thing that is not archival is information that is current.

The foundation of DSS processing—the data warehouse—contains nothing but
archival information, most of it at least 24 hours old. But archival data is found
elsewhere throughout the architected environment. In particular, some limited
amounts of archival data are also found in the operational environment.

In the data warehouse it is normal to have a vast amount of archival data—from
5 to 10 years of data is common. Because of the wide time horizon of archival
data, the data warehouse contains a massive amount of data. The time horizon
of archival data found in the operational environment—the “operational win-
dow” of data—is not nearly as long. It can be anywhere from 1 week to 2 years.

The time horizon of archival data in the operational environment is not the only
difference between archival data in the data warehouse and in the operational

The Data Warehouse Environment 75

environment. Unlike the data warehouse, the operational environment'’s
archival data is nonvoluminous and has a high probability of access.

In order to understand the role of fresh, nonvoluminous, high-probability-of-
access archival data in the operational environment, consider the way a bank
works. In a bank environment, the customer can reasonably expect to find
information about this month’s transactions. Did this month’s rent check clear?
When was a paycheck deposited? What was the low balance for the month? Did
the bank take out money for the electricity bill last week?

The operational environment of a bank, then, contains very detailed, very cur-
rent transactions (which are still archival). Is it reasonable to expect the bank
to tell the customer whether a check was made out to the grocery store 5 years
ago or whether a check to a political campaign was cashed 10 years ago? These
transactions would hardly be in the domain of the operational systems of the
bank. These transactions very old, and so the has a very low probability of
access.

The operational window of time varies from industry to industry and even in
type of data and activity within an industry.

For example, an insurance company would have a very lengthy operational win-
dow—from 2 to 3 years. The rate of transactions in an insurance company is
very low, at least compared to other types of industries. There are relatively few
direct interactions between the customer and the insurance company. The oper-
ational window for the activities of a bank, on the other hand, is very short—
from 0 to 60 days. A bank has many direct interactions with its customers.

The operational window of a company depends on what industry the company
is in. In the case of a large company, there may be more than one operational
window, depending on the particulars of the business being conducted. For
example, in a telephone company, customer usage data may have an opera-
tional window of 30 to 60 days, while vendor/supplier activity may have a win-
dow of 2 to 3 years.

The following are some suggestions as to how the operational window of
archival data may look in different industries:

Insurance—2 to 3 years

Bank trust processing—2 to 5 years

Telephone customer usage—30 to 60 days
Supplier/vendor activity—2 to 3 years

Retail banking customer account activity—30 days

Vendor activity—1 year

Loans—2 to 5 years

LM} cHAPTER2

m Retailing SKU activity—1 to 14 days

m Vendor activity—1 week to 1 month

m Airlines flight seat activity— 30 to 90 days

m Vendor/supplier activity—1 to 2 years

m Public utility customer utilization—60 to 90 days

m Supplier activity—1 to 5 years

The length of the operational window is very important to the DSS analyst
because it determines where the analyst goes to do different kinds of analysis
and what kinds of analysis can be done. For example, the DSS analyst can do
individual-item analysis on data found within the operational window, but can-
not do massive trend analysis over a lengthy period of time. Data within the
operational window is geared to efficient individual access. Only when the data
passes out of the operational window is it geared to mass data storage and
access.

On the other hand, the DSS analyst can do sweeping trend analysis on data
found outside the operational window. Data out there can be accessed and
processed en masse, whereas access to any one individual unit of data is not
optimal.

Incorrect Data in the Data Warehouse

The architect needs to know what to do about incorrect data in the data ware-
house. The first assumption is that incorrect data arrives in the data warehouse
on an exception basis. If data is being incorrectly entered in the data warehouse
on a wholesale basis, then it is incumbent on the architect to find the offending
ETL program and make adjustments. Occasionally, even with the best of ETL
processing, a few pieces of incorrect data enter the data warehouse environ-
ment. How should the architect handle incorrect data in the data warehouse?

There are at least three options. Each approach has its own strengths and
weaknesses, and none are absolutely right or wrong. Instead, under some cir-
cumstances one choice is better than another.

For example, suppose that on July 1 an entry for $5,000 is made into an opera-
tional system for account ABC. On July 2 a snapshot for $5,000 is created in the
data warehouse for account ABC. Then on August 15 an error is discovered.
Instead of an entry for $5,000, the entry should have been for $750. How can the
data in the data warehouse be corrected?

The Data Warehouse Environment 77

m Choice 1: Go back into the data warehouse for July 2 and find the offend-
ing entry. Then, using update capabilities, replace the value $5,000 with the
value $750. This is a clean and neat solution when it works, but it intro-
duces new issues:

m The integrity of the data has been destroyed. Any report running
between July 2 and Aug 16 will not be able to be reconciled.

m The update must be done in the data warehouse environment.

m In many cases there is not a single entry that must be corrected, but
many, many entries that must be corrected.

m Choice 2: Enter offsetting entries. Two entries are made on August 16, one
for —$5,000 and another for +$750. This is the best reflection of the most
up-to-date information in the data warehouse between July 2 and August
16. There are some drawbacks to this approach:

=m Many entries may have to be corrected, not just one. Making a simple
adjustment may not be an easy thing to do at all.

m Sometimes the formula for correction is so complex that making an
adjustment cannot be done.

m Choice 3: Reset the account to the proper value on August 16. An entry on
August 16 reflects the balance of the account at that moment regardless of
any past activity. An entry would be made for $750 on August 16. But this
approach has its own drawbacks:

m The ability to simply reset an account as of one moment in time requires
application and procedural conventions.

m Such a resetting of values does not accurately account for the error that
has been made.

Choice 3 is what likely happens when you cannot balance your checking
account at the end of the month. Instead of trying to find out what the bank has
done, you simply take the bank’s word for it and reset the account balance.

There are then at least three ways to handle incorrect data as it enters the data
warehouse. Depending on the circumstances, one of the approaches will yield
better results than another approach.

Summary

The two most important design decisions that can be made concern the granu-
larity of data and the partitioning of data. For most organizations, a dual level

78

of granularity makes the most sense. Partitioning of data breaks it down into
small physical units. As a rule, partitioning is done at the application level
rather than at the system level.

Data warehouse development is best done iteratively. First one part of the data
warehouse is constructed, then another part of the warehouse is constructed. It
is mever appropriate to develop the data warehouse under the “big bang”
approach. One reason is that the end user of the warehouse operates in a dis-
covery mode, so only after the warehouse’s first iteration is built can the devel-
oper tell what is really needed in the warehouse.

The granularity of the data residing inside the data warehouse is of the utmost
importance. A very low level of granularity creates too much data, and the sys-
tem is overwhelmed by the volumes of data. A very high level of granularity is
efficient to process but precludes many kinds of analyses that need detail. In
addition, the granularity of the data warehouse needs to be chosen in an aware-
ness of the different architectural components that will feed off the data ware-
house.

Surprisingly, many design alternatives can be used to handle the issue of gran-
ularity. One approach is to build a multitiered data warehouse with dual levels
of granularity that serve different types of queries and analysis. Another
approach is to create a living sample database where statistical processing can
be done very efficiently from a living sample database.

Partitioning a data warehouse is very important for a variety of reasons. When
data is partitioned it can be managed in separate, small, discrete units. This
means that loading the data into the data warehouse will be simplified, building
indexes will be streamlined, archiving data will be easy, and so forth. There are
at least two ways to partition data—at the DBMS/operating system level and at
the application level. Each approach to partitioning has its own set of advan-
tages and disadvantages.

Each unit of data in the data warehouse environment has a moment associated
with it. In some cases, the moment in time appears as a snapshot on every
record. In other cases, the moment in time is applied to an entire table. Data is
often summarized by day, month, or quarter. In addition, data is created in a
continuous manner. The internal time structuring of data is accomplished in
many ways.

Auditing can be done from a data warehouse, but auditing should not be done
from a data warehouse. Instead, auditing is best done in the detailed opera-
tional transaction-oriented environment. When auditing is done in the data
warehouse, data that would not otherwise be included is found there, the tim-
ing of the update into the data warehouse becomes an issue, and the level of

The Data Warehouse Environment 79

granularity in the data warehouse is mandated by the need for auditing, which
may not be the level of granularity needed for other processing.

A normal part of the data warehouse life cycle is that of purging data. Often,
developers neglect to include purging as a part of the specification of design.
The result is a warehouse that grows eternally, which, of course, is an impossi-
bility.

The Data Warehou
and Design

T

CHAPTER

here are two major components to building a data warehouse: the design of
the interface from operational systems and the design of the data warehouse
itself. Yet, “design” is not entirely accurate because it suggests planning ele-
ments out in advance. The requirements for the data warehouse cannot be
known until it is partially populated and in use and design approaches that
have worked in the past will not necessarily suffice in subsequent data ware-
houses. Data warehouses are constructed in a heuristic manner, where one
phase of development depends entirely on the results attained in the previous
phase. First, one portion of data is populated. It is then used and scrutinized by
the DSS analyst. Next, based on feedback from the end user, the data is modi-
fied and/or other data is added. Then another portion of the data warehouse is
built, and so forth.This feedback loop continues throughout the entire life of
the data warehouse.

Therefore, data warehouses cannot be designed the same way as the classical
requirements-driven system. On the other hand, anticipating requirements is
still important. Reality lies somewhere in between.

A data warehouse design methodology that parallels this chapter can be found—for
free—on www.billinmon.com. The methodology is iterative and all of the required
design steps are greatly detailed.

Bl cHAPTERS

Beginning with Operational Data

At the outset, operational transaction-oriented data is locked up in existing
legacy systems. Though tempting to think that creating the data warehouse
involves only extracting operational data and entering it into the warehouse,
nothing could be further from the truth. Merely pulling data out of the legacy
environment and placing it in the data warehouse achieves very little of the
potential of data warehousing.

Figure 3.1 shows a simplification of how data is transferred from the existing
legacy systems environment to the data warehouse. We see here that multiple
applications contribute to the data warehouse.

Figure 3.1 is overly simplistic for many reasons. Most importantly, it does not
take into account that the data in the operational environment is unintegrated.
Figure 3.2 shows the lack of integration in a typical existing systems environ-
ment. Pulling the data into the data warehouse without integrating it is a grave
mistake.

When the existing applications were constructed, no thought was given to pos-
sible future integration. Each application had its own set of unique and private
requirements. It is no surprise, then, that some of the same data exists in vari-
ous places with different names, some data is labeled the same way in different
places, some data is all in the same place with the same name but reflects a dif-
ferent measurement, and so on. Extracting data from many places and inte-
grating it into a unified picture is a complex problem.

data
warehouse

existing
applications

Figure 3.1 Moving from the operational to the data warehouse environment is not as
simple as mere extraction.

The Data Warehouse and Design 83

savings DDA loans trust
same data, different data, data found here, different keys,
different name same name nowhere else same data

Figure 3.2 Data across the different applications is severely unintegrated.

This lack of integration is the extract programmer’s nightmare. As illustrated in
Figure 3.3, countless details must be programmed and reconciled just to bring
the data properly from the operational environment.

One simple example of lack of integration is data that is not encoded consis-
tently, as shown by the encoding of gender. In one application, gender is
encoded as m/f. In another, it is encoded as 0/1. In yet another it is encoded as
x/y. Of course, it doesn’t matter how gender is encoded as long as it is done con-
sistently. As data passes to the data warehouse, the applications’ different val-
ues must be correctly deciphered and recoded with the proper value.

As another example, consider four applications that have the same field-
pipeline. The pipeline field is measured differently in each application. In one
application, pipeline is measured in inches, in another in centimeters, and so
forth. It does not matter how pipeline is measured in the data warehouse, as
long as it is measured consistently. As each application passes its data to the
warehouse, the measurement of pipeline is converted into a single consistent
corporate measurement.

Field transformation is another integration issue. Say that the same field exists
in four applications under four different names. To transform the data to the
data warehouse properly, a mapping from the different source fields to the data
warehouse fields must occur.

Yet another issue is that legacy data exists in many different formats under
many different DBMSs. Some legacy data is under IMS, some legacy data is
under DB2, and still other legacy data is under VSAM. But all of these technolo-
gies must have the data they protect brought forward into a single technology.
Such a translation of technology is not always straightforward.

84

encoding transformation data warehouse
appl A —-mf —) ¥

appl B-1,0 O /" ’

appl C—x,y O /

appl D —male, female O

unit of measure transformation data warehouse
appl A —pipeline—cm

appl B —pipeline—in O < cm

appl C —pipeline—mcf | /

appl D —pipeline—yds O

field transformation data warehouse

appl A —balance O N
appl B —bal * bal
appl C —currbal O /
appl D —balcurr]

Figure 3.3 To properly move data from the existing systems environment to the data
warehouse environment, it must be integrated.

These simple examples hardly scratch the surface of integration, and they are
not complex in themselves. But when they are multiplied by the thousands of
existing systems and files, compounded by the fact that documentation is usu-
ally out-of-date or nonexistent, the issue of integration becomes burdensome.

But integration of existing legacy systems is not the only difficulty in the trans-
formation of data from the operational, existing systems environment to the
data warehouse environment. Another major problem is the efficiency of
accessing existing systems data. How does the program that scans existing sys-
tems know whether a file has been scanned previously? The existing systems
environment holds tons of data, and attempting to scan all of it every time a
data warehouse load needs to be done is wasteful and unrealistic.

Three types of loads are made into the data warehouse from the operational
environment:

m Archival data

m Data currently contained in the operational environment

m Ongoing changes to the data warehouse environment from the changes
(updates) that have occurred in the operational environment since the last
refresh

As arule, loading archival data from the legacy environment as the data ware-
house is first loaded presents a minimal challenge for two reasons. First, it

The Data Warehouse and Design 85

often is not done at all. Organizations find the use of old data not cost-effective
in many environments. Second, even when archival data is loaded, it is a one-
time-only event.

Loading current, nonarchival data from the existing operational environment
likewise presents a minimal challenge because it needs to be done only once.
Usually, the existing systems environment can be downloaded to a sequential
file, and the sequential file can be downloaded into the warehouse with no dis-
ruption to the online environment. Although system resources are required,
because the process is done only once, the event is minimally disruptive.

Loading data on an ongoing basis—as changes are made to the operational
environment—presents the largest challenge to the data architect. Efficiently
trapping those ongoing daily changes and manipulating them is not easy. Scan-
ning existing files, then, is a major issue facing the data warehouse architect.

Five common techniques are used to limit the amount of operational data
scanned at the point of refreshing the data warehouse, as shown in Figure 3.4.
The first technique is to scan data that has been timestamped in the operational
environment. When an application stamps the time of the last change or update
on a record, the data warehouse scan can run quite efficiently because data
with a date other than that applicable does not have to be touched. It usually is
only by happenstance, though, that existing data has been timestamped.

The second technique to limiting the data to be scanned is to scan a “delta” file.
A delta file contains only the changes made to an application as a result of the
transactions that have run through the operational environment. With a delta
file, the scan process is very efficient because data that is not a candidate for
scanning is never touched. Not many applications, however, build delta files.

The third technique is to scan a log file or an audit file created as a by-product of
transaction processing. A log file contains essentially the same data as a delta
file; however, there are some major differences. Many times, operations protects
the log files because they are needed in the recovery process. Computer opera-
tions is not particularly thrilled to have its log file used for something other than
its primary purpose. Another difficulty with a log tape is that the internal format
is built for systems purposes, not applications purposes. A technological guru
may be needed to interface the contents of data on the log tape. Another short-
coming is that the log file usually contains much more information than that
desired by the data warehouse developer. Audit files have many of the same
shortcomings as log files. An example of the use of log files to update a data
warehouse is the Web logs created by the Web-based ebusiness environment.

The fourth technique for managing the amount of data scanned is to modify
application code. This is never a popular option, as much application code is
old and fragile.

time stamped

existing
applications
delta
file —
existing
log or Ej applications
audit file
existing Ej = E\ %
applications g\\
before after application = /
image image code = existing
Ej Ej applications
\ changes

to database
since last update

Figure 3.4 How do you know what source data to scan? Do you scan every record every
day? Every week?

The last option (in most respects, a hideous one, mentioned primarily to con-
vince people that there must be a better way) is rubbing a “before” and an
“after” image of the operational file together. In this option, a snapshot of a
database is taken at the moment of extraction. When another extraction is per-
formed, another snapshot is taken. The two snapshots are serially compared to
each other to determine the activity that has transpired. This approach is cum-
bersome and complex, and it requires an inordinate amount of resources. It is
simply a last resort to be done when nothing else works.

Integration and performance are not the only major discrepancies that prevent
a simple extract process from being used to construct the data warehouse. A
third difficulty is that operational data must undergo a time-basis shift as it
passes into the data warehouse, as shown in Figure 3.5.

Existing operational data is almost always current-value data. Such data’s accu-
racy is valid as of the moment of access, and it can be updated. But data that

The Data Warehouse and Design 87

time basis shift

current value

dail
C» current value Y

balance
Q current value
current value \ daily

balance
tx current value

tx Q current value

daily
current value balance
a new balance created balance taken
upon successful completion at end of day

of a transaction

Figure 3.5 A shift in time basis is required as data is moved over from the operational
to the data warehouse environment.

goes into the data warehouse cannot be updated. Instead, an element of time
must be attached to it. A major shift in the modes of processing surrounding the
data is necessary as it passes into the data warehouse from the operational
environment.

Yet another major consideration when passing data is the need to manage the
volume of data that resides in and passes into the warehouse. Data must be
condensed both at the moment of extraction and as it arrives at the warehouse.
If condensation is not done, the volume of data in the data warehouse will grow
rapidly out of control. Figure 3.6 shows a simple form of data condensation.

Data/Process Models and the
Architected Environment

Before attempting to apply conventional database design techniques, the
designer must understand the applicability and the limitations of those tech-
niques. Figure 3.7 shows the relationship among the levels of the architecture
and the disciplines of process modeling and data modeling. The process model
applies only to the operational environment. The data model applies to both the
operational environment and the data warehouse environment. Trying to use a
process or data model in the wrong place produces nothing but frustration.

managing volumes of data
current value ging

currentvalue ——>

daily
balance
If the volumes of data are not
carefully managed and condensed,
the sheer volume of data that
aggregates in the data warehouse weekly
prevents the goals of the balance
warehouse from being achieved. l
monthly
balance

Figure 3.6 Condensation of data is a vital factor in the managing of warehouse data.

In general there are two types of models for the information systems environ-
ment—data models and process models. Data models are discussed in depth in
the following section. For now, we will address process models. A process
model typically consists of the following (in whole or in part):

Functional decomposition
Context-level zero diagram
Data flow diagram
Structure chart

State transition diagram
HIPO chart

Pseudocode

There are many contexts and environments in which a process model is invalu-
able—for instance, when building the data mart. However, because the process
model is requirements-based, it is not suitable for the data warehouse. The
process model assumes that a set of known processing requirements exists—a
priori—before the details of the design are established. With processes, such an
assumption can be made. But those assumptions do not hold for the data ware-
house. Many development tools, such as CASE tools, have the same orientation
and as such are not applicable to the data warehouse environment.

The Data Warehouse and Design 89

i g the corporate model, the operational
E E model, and the data warehouse model
el

data mod
applles directly \ applies indirectly
oper data dept ind
warehouse

data warehouse

applles directly

= N N

ﬂg

< <
process model

Figure 3.7 How the different types of models apply to the architected environment.

The Data Warehouse and Data Models

As shown in Figure 3.8, the data model is applicable to both the existing sys-
tems environment and the data warehouse environment. Here, an overall cor-
porate data model has been constructed with no regard for a distinction
between existing operational systems and the data warehouse. The corporate
data model focuses on and represents only primitive data. To construct a sepa-
rate existing data model, the beginning point is the corporate model, as shown.
Performance factors are added into the corporate data model as the model is
transported to the existing systems environment. All in all, very few changes
are made to the corporate data model as it is used operationally.

However, a fair number of changes are made to the corporate data model as
it is applied to the data warehouse. First, data that is used purely in the

model

%S EHE corporate
= i=
el =

data mod

=HE]

=| 1=

data model =]
=EHEZ=E
=] =
el =

data warehouse

ta model
data mod data mode
operational
data model data warehouse
oper
e operational data model equals * remove pure operational data
corporate data model * add element of time to key

¢ performance factors are added prior « add derived data where appropriate

o database design ¢ create artifacts of relationships

Figure 3.8 How the different levels of modeling relate.

operational environment is removed. Next, the key structures of the corporate
data model are enhanced with an element of time. Derived data is added to the
corporate data model where the derived data is publicly used and calculated
once, not repeatedly. Finally, data relationships in the operational environment
are turned into “artifacts” in the data warehouse.

A final design activity in transforming the corporate data model to the data
warehouse data model is to perform “stability” analysis. Stability analysis
involves grouping attributes of data together based on their propensity for
change. Figure 3.9 illustrates stability analysis for the manufacturing environ-
ment. Three tables are created from one large general-purpose table based on
the stability requirements of the data contained in the tables.

In Figure 3.9, data that seldom changes is grouped, data that sometimes
changes is grouped, and data that frequently changes is grouped. The net

The Data Warehouse and Design 91

Part Table Seldom Sometimes Frequently
Changes Changes Changes
part-id
description °
primary substitute °
qty on hand °
order unit °

safety stock °
primary supplier °
lead time °

acceptable reject rate +—o

expediter
last order date
last order amount
last delivery to
shipping manifest
order amount

part-id

description

order unit

lead time

acceptable reject rate
shipping manifest

part-id
primary substitute
safety stock
primary supplier
expediter

part-id

qty on hand

last order date
last order amount
last delivery to
order amount

Figure 3.9 An example of stability analysis.

result of stability analysis (which usually is the last step of data modeling
before physical database design) is to create groups of data with similar
characteristics.

There is, then, a common genesis of data models. As an analogy, say the cor-
porate data model is Adam, the operational data model is Cain, and the data

Bl CHAPTERS

warehouse data model is Abel. They are all from the same lineage, but at the
same time, they are all different.

The Data Warehouse Data Model

(Other books have been written on data modeling, detailing several different
approaches. Any number can be used successfully in building a data ware-
house. The approach summarized here can be further explored in my previous
book Information Systems Architecture: Development in the 90s [QED/Wiley,
1992].)

There are three levels of data modeling: high-level modeling (called the ERD,
entity relationship level), midlevel modeling (called the data item set, or DIS),
and low-level modeling (called the physical model).

The high level of modeling features entities and relationships, as shown in Fig-
ure 3.10. The name of the entity is surrounded by an oval. Relationships among
entities are depicted with arrows. The direction and number of the arrowheads
indicate the cardinality of the relationship, and only direct relationships are
indicated. In doing so, transitive dependencies are minimized.

The entities that are shown in the ERD level are at the highest level of abstrac-
tion. What entities belong in the scope of the model and what entities do not are

Q An oval represents an entity, or major subject.

_ > a 1:nrelationship
a 1:1 relationship

D — an m: n relationship

a simple ERD for the manufacturing environment

Figure 3.10 Representing entities and relationships.

The Data Warehouse and Design 93

determined by what is termed the “scope of integration,” as shown in Fig-
ure 3.11. The scope of integration defines the boundaries of the data model and
needs to be defined before the modeling process commences. The scope is
agreed on by the modeler, the management, and the ultimate user of the system.
If the scope is not predetermined, there is the great chance that the modeling
process will continue forever. The definition of the scope of integration should
be written in no more than five pages and in language understandable to the
businessperson.

As shown in Figure 3.12, the corporate ERD is a composite of many individual
ERDs that reflect the different views of people across the corporation. Separate

-

oooo -
=T -

scope of integration

data
model

Figure 3.11 The scope of integration determines what portion of the enterprise will be
reflected in the data model.

94

user view (1) ——

ERD(1)

user view (2) ————> ({%\}
ERD(2)

o (3) Q/CSD corporate ERD
user view (3) ——>

ERD(3)

user view (n) ——>

ERD(n)

Figure 3.12 The construction of the corporate ERD from the different user view ERDs.

high-level data models have been created for different communities within the
corporation. Collectively, they make up the corporate ERD.

The ERDs representing the known requirements of the DSS community are cre-
ated by means of user view sessions, which are interview sessions with the
appropriate personnel in the various departments.

The Midlevel Data Model

After the high-level data model is created, the next level is established—the
midlevel model, or the DIS. For each major subject area, or entity, identified in
the high-level data model, a midlevel model is created, as seen in Figure 3.13.
The high-level data model has identified four entities, or major subject areas.
Each area is subsequently developed into its own midlevel model.

Interestingly, only very rarely are all of the midlevel models developed at once.
The midlevel data model for one major subject area is expanded, then a portion
of the model is fleshed out while other parts remain static, and so forth.

Shown in Figure 3.14, four basic constructs are found at the midlevel model:

The Data Warehouse and Design 95

DIS ,/ DIS

- DIS

pis []«

the relationship between the ERD and the DIS

00

Figure 3.13 Each entity in the ERD is further defined by its own DIS.

primary
grouping ™
of data RN
key key
XXXXXX XXXXXX X
XXXXXX XXXXXX SO
| N > ~ f’
“type of’
key key || key , data
XXXXXX XXXXXX e
7 /
7] xooxxx , XXXXXX v
P 4 ! /
s ! 7/
secondary ! key |/
. 1 |
grouping XXXXXX
of data connector XXXXXX
data

Figure 3.14 The four constructs that make up the midlevel data model.

m A primary grouping of data
m A secondary grouping of data

m A connector, signifying the relationships of data between major subject
areas

m “Type of” data

The primary grouping exists once, and only once, for each major subject area.
It holds attributes that exist only once for each major subject area. As with all

groupings of data, the primary grouping contains attributes and keys for each
major subject area.

The secondary grouping holds data attributes that can exist multiple times for
each major subject area. This grouping is indicated by a line emanating down-
ward from the primary grouping of data. There may be as many secondary
groupings as there are distinct groups of data that can occur multiple times.

The third construct is the connector. The connector relates data from one
grouping to another. A relationship identified at the ERD level results in an
acknowledgment at the DIS level. The convention used to indicate a connector
is an underlining of a foreign key.

The fourth construct in the data model is “type of” data. “Type of” data is indi-
cated by a line leading to the right of a grouping of data. The grouping of data to
the left is the supertype. The grouping of data to the right is the subtype of data.

These four data modeling constructs are used to identify the attributes of data
in a data model and the relationship among those attributes. When a relation-
ship is identified at the ERD level, it is manifested by a pair of connector rela-
tionships at the DIS level. Figure 3.15 shows one of those pairs.

At the ERD, a relationship between customer and account has been identified.
At the DIS level for account, there exists a connector beneath account. This
indicates that an account may have multiple customers attached to it. Not
shown is the corresponding relationship beneath the customer in the customer
DIS. Here will be a connector to account, indicating that a customer can have
an account or accounts.

@ acctno
balance

domicile

date opened

ERD Coooom 3 —
customer

address
street
city
state
zip

Figure 3.15 The relationships identified in the ERD are reflected by connectors in the
DIS. Note that only one connector—from acctno to customer—is shown in
this diagram. In reality, another connector from customer to acctno would
be shown elsewhere in the DIS for customer.

The Data Warehouse and Design 97

Figure 3.16 shows what a full-blown DIS might look like, where a DIS exists for
an account for a financial institution. In this example, all of the different con-
structs are shown in the DIS.

Of particular interest is the case where a grouping of data has two “type of”
lines emanating from it, as seen in Figure 3.17. The two lines leading to the right
indicate that there are two “type of” criteria. One type of criteria is by activity
type—either a deposit or a withdrawal. The other line indicates another—
either an ATM activity or a teller activity. Collectively, the two types of activity
encompass the following transactions:

m ATM deposit

m ATM withdrawal
m Teller deposit
|

Teller withdrawal

Another feature of the diagram is that all common data is to the left and all
unique data is to the right. For example, the attributes date and time are com-
mon to all transactions, but cashbox balance relates only to teller activity.

The relationship between the data model and the physical tables that result
from the data model is shown in Figure 3.18. In general, each grouping of data
results in a table being defined in the database design process. Assuming that to

Loans Home
acctno acctno address
balance credit limit collateral cosigner
domicile interest type appraisal
date opened
savings car
customer address | acqt ho . year
minimum deposit make
street o
city minimum balance model
state trust color
zip acctno bankcard
officer acctno
category non-collateral type
limit
exp date
signature

Figure 3.16 An expanded DIS showing the different types of loans that a bank may
support.

Banking activity Deposit
acctno instrument
date posting requested?
time
amount withdrawal
location
type balance verified?
teller ID used?
cash/check/other?
ATM
ID number
limit request exceeded
exact time stamp
the types of activity teller
represented by this DIS:
. teller ID
e ATM dgposn automated verification
* ATM withdrawal sequence number
e teller deposit cashbox balance
e teller withdrawal

Figure 3.17 A DIS showing different subcategorization criteria.

be the case, two transactions result in several table entries, as seen in the Fig-
ure 3.18. The physical table entries that resulted came from the following two
transactions:

m An ATM withdrawal that occurred at 1:31 P.M. on January 2

m A teller deposit that occurred at 3:15 P.M. on January 5

The two transactions caused six entries in five separate tables to be generated.

Like the corporate ERD that is created from different ERDs reflecting the com-
munity of users, the corporate DIS is created from multiple DISs, as illustrated
by Figure 3.19. When the interviews or JAD sessions are done for a particular
user, a DIS, as well as an ERD, is created. The parochial DIS is then merged with
all other DISs to form the corporate view of a DIS.

The Physical Data Model

The physical data model is created from the midlevel data model merely by
extending the midlevel data model to include keys and physical characteristics
of the model. At this point, the physical data model looks like a series of tables,
sometimes called relational tables.

The Data Warehouse and Design 99

the different types of data that would exist in separate tables as a result of the DIS

deposit table
banking acct = 1234
activity deposit date = Jan 5
time = 3:15 pm
acctno instrument éizggeizqieizgk- i
date posting requested?
time
amount withdrawal table
location
type withdrawal acct = 1234
teller date = Jan 2
- i = 1g3d
balance verified? time sloem
" balance verified = yes
L_| ID used ID used = yes
cash/check/other? check
ATM table
banking ATM
activity table acct = 1234
ID number date = Jan 2
acct = 1234 - limit request exceeded time = 1:31 pm
date = Jan 2 exact time stamp ID number = Ab00191S
time = 1:31 pm limit exceeded = no
amount = $25 exact timestamp = 1:31:35:05
type = w/d
teller = atm teller
teller table
teller ID
acct = 1234 automated verification acct = 1234
Ctifj‘te = gaT1155 sequence number Ctiff‘te = garl’;
ime = 3: pm ime = 3: pm
amount = $1000 cashbox balance teller ID = JLC
type = deposit automated verification = no
teller = teller sequence number = 901
cashbox balance = $112,109.32

Figure 3.18 The table entries represented by the two transactions.

Although it is tempting to say that the tables are ready to be cast into the con-
crete of physical database design, one last design step remains—factoring in
the performance characteristics. With the data warehouse, the first step in
doing so is deciding on the granularity and partitioning of the data. This is cru-
cial. (Of course, the key structure is changed to add the element of time, to
which each unit of data is relevant.)

After granularity and partitioning are factored in, a variety of other physical
design activities are embedded into the design, as outlined in Figure 3.20. At the
heart of the physical design considerations is the usage of physical I/O
(input/output). Physical I/O is the activity that brings data into the computer

user view (1) </, Ci
L ERD(1)
DIS(1)
/ -
user view (2) < ({%
. ERD(2)
pIs@) corporate ERD
/ O/Ci)
user view (3) <\> ERD(3)
DIS(3)

, < ERD(n)
user view (n)

DIS(n)

(00

corporate DIS

Figure 3.19 The corporate DIS is made up of the DIS created as a result of each user
view session.

from storage or sends data to storage from the computer. Figure 3.21 shows a
simple case of I/O.

Data is transferred to and from the computer to storage in blocks. The I/O event
is vital to performance because the transfer of data to and from storage to the
computer occurs roughly two to three orders of magnitude slower than the
speeds at which the computer runs. The computer runs internally in terms of
nanosecond speed. Transfer of data to and from storage occurs in terms of mil-
liseconds. Thus, physical I/O is the main impediment to performance.

The Data Warehouse and Design 101

/
* performance
— arrays of data data model
I:%D — merging tables
— selective redundancy

— further separation of data
derived data

preformatting, preallocation
relationship artifacts
prejoining tables

physical
database design

Figure 3.20 Getting good performance out of the data warehouse environment.

1/0

Ooonono

computer

Figure 3.21 Getting the most out of the physical I/Os that have to be done.

The job of the data warehouse designer is to organize data physically for the
return of the maximum number of records from the execution of a physical I/0.
(Note: This is not an issue of blindly transferring a large number of records
from DASD to main storage; instead, it is a more sophisticated issue of trans-
ferring a bulk of records that have a high probability of being accessed.)

For example, suppose a programmer must fetch five records. If those records
are organized into different blocks of data on storage, then five I/Os will be
required. But if the designer can anticipate that the records will be needed as a
group and can physically juxtapose those records into the same block, then
only one I/O will be required, thus making the program run much more
efficiently.

There is another mitigating factor regarding physical placement of data in the
data warehouse: Data in the warehouse normally is not updated. This frees the
designer to use physical design techniques that otherwise would not be accept-
able if it were regularly updated.

102

The

Data Model and Iterative Development

In all cases, the data warehouse is best built iteratively. The following are some
of the many reasons why iterative development is important:

m The industry track record of success strongly suggests it.

m The end user is unable to articulate requirements until the first iteration is
done.

m Management will not make a full commitment until actual results are tangi-
ble and obvious.

m Visible results must be seen quickly.

What may not be obvious is the role of the data model in iterative development.
To understand the role of the data model during this type of development, con-
sider the typical iterative development suggested by Figure 3.22. First, one
development effort is undertaken, then another, and so forth. The data ware-
house serves as a roadmap for each of the development efforts, as seen in Fig-
ure 3.23.

When the second development effort ensues, the developer is confident that he
or she will intersect his or her effort with the first development effort because
all development efforts are being driven from the data model. Each succeeding
development effort builds on the preceding one. The result is that the different
development efforts are done under a unifying data model. And because they
are built under a single data model, the individual iterative efforts produce a
cohesive and tightly orchestrated whole, as seen in Figure 3.24.

When the different iterations of development are done with no unifying data
model, there is much overlap of effort and much separate, disjoint develop-
ment. Figure 3.25 suggests this cacophonous result.

There is, then, an indirect, yet important, correlation between the data model
and the ability to achieve long-term integration and a harmonious effort in the
incremental and iterative development of a data warehouse.

Normalization/Denormalization

The output of the data model process is a series of tables, each of which con-
tains keys and attributes. The normal output produces numerous table, each

The Data Warehouse and Design 103

iteration b

iteration a

iteration ¢

iteration d

Figure 3.22 The different iterations of data warehouse development.

iteration b

iteration a /

iteration ¢

iteration d

Figure 3.23 The data model allows the different iterations of development to be built in
a cohesive manner.

V

Figure 3.24 At the end of the development effort, all the iterations fit together.

104

/

Figure 3.25 When there is no data model, the iterations do not form a cohesive pattern.
There is much overlap and lack of uniformity.

with only a modicum of data. While there is nothing wrong—per se—with lots
of little tables, there is a problem from a performance perspective. Consider the
work the program has to do in order to interconnect the tables dynamically, as
shown in Figure 3.26.

In Figure 3.26, a program goes into execution. First, one table is accessed, then
another. To execute successfully, the program must jump around many tables.
Each time the program jumps from one table to the next, I/O is consumed, in
terms of both accessing the data and accessing the index to find the data. If only
one or two programs had to pay the price of I/O, there would be no problem.
But when all programs must pay a stiff price for I/O, performance in general
suffers, and that is precisely what happens when many small tables, each con-
taining a limited amount of data, are created as a physical design.

A more rational approach is to physically merge the tables so that minimal I/O
is consumed, as seen in Figure 3.27. Now the same program operates as before,
only it needs much less I/O to accomplish the same task.

The question, then, becomes what is a sane strategy to merge the tables so that
the maximum benefit is derived? It is in answering this question that the physi-
cal database designer earns his or her reward.

Merging tables is only one design technique that can save I/O. Another very use-
ful technique is creating an array of data. In Figure 3.28, data is normalized so
that each occurrence of a sequence of data resides in a different physical loca-
tion. Retrieving each occurrence, n,n + 1,n + 2, ... , requires a physical I/O
to get the data. If the data were placed in a single row in an array, then a single
I/O would suffice to retrieve it, as shown at the bottom of Figure 3.28.

Of course, it does not make sense to create an array of data in every case. Only
when there are a stable number of occurrences, where the data is accessed in
sequence, where it is created and/or updated in a statistically well-behaved

The Data Warehouse and Design 105

=—1—1 = =

:—_— = =
=

program /

Figure 3.26 When there are many tables, much 1/0 is required for dynamic intercon-
nectability.

0
I
I

]
I

1]
ok
'\'\“

[
I

Figure 3.27 When tables are physically merged, much less I/0 is required.

sequence, and so forth, does creating an array pay off.

Interestingly, in the data warehouse these circumstances occur regularly
because of the time-based orientation of the data. Data warehouse data is
always relevant to some moment in time, and units of time occur with great reg-
ularity. In the data warehouse, creating an array by month, for example, is a
very easy, natural thing to do.

Another important design technique that is especially relevant to the data ware-
house environment is the deliberate introduction of redundant data. Figure 3.29

creating arrays of data for performance

program

||n+1 ” || | | an array of data
scattered over
separate physical
blocks

program || n | |n+1| |n+2| |n+3| |n+4| |

data physically organized into an array

Figure 3.28 Under the right circumstances, creating arrays of data can save consider-
able resources.

shows an example where the deliberate introduction of redundant data pays a
big dividend. In the top of Figure 3.29, the field—description—is normalized
and exists nonredundantly. In doing so, all processes that must see the descrip-
tion of a part must access the base parts table. The access of the data is very
expensive, although the update of the data is optimal.

In the bottom of Figure 3.29, the data element—description—has been deliber-
ately placed in the many tables where it is likely to be used. In doing so, the
access of data is more efficient, and the update of data is not optimal. For data
that is widely used (such as description), and for data that is stable (such as
description), however, there is little reason to worry about update. In particular,
in the data warehouse environment there is no concern whatsoever for update.

Another useful technique is the further separation of data when there is a wide
disparity in the probability of access. Figure 3.30 shows such a case.

In Figure 3.30, concerning a bank account, the domicile of the account and the
data opened for the account are normalized together with the balance of the
account. Yet the balance of the account has a very different probability of
access than the other two data elements. The balance of an account is very pop-
ular, while the other data is hardly ever accessed. To make I/O more efficient
and to store the data more compactly, it makes sense to further reduce the nor-
malized table into two separate tables, as shown.

selective use of redundancy

The Data Warehouse and Design 107

partno mrp prod ctl inventory bom
desc partno partno partno partno
1 N O (N P
qty fe———— | | e e]
] |
update access access access access access

Description is nonredundant and is used frequently, but is seldom updated.

partno mrp prod ctl inventory [| bom
desc partno partno partno partno
um desc desc desc desc
ay o
update access access access access access

Figure 3.29 Description is redundantly spread over the many places it is used. It must

be updated in many places when it changes, but it seldom, if ever, does.

Occasionally, the introduction of derived (i.e., calculated) data into the physical
database design can reduce the amount of I/O needed. Figure 3.31 shows such
a case. A program accesses payroll data regularly in order to calculate the
annual pay and taxes that have been paid. If the program is run regularly and at
the year’s end, it makes sense to create fields of data to store the calculated
data. The data has to be calculated only once. Then all future requirements can
access the calculated field. This approach has another advantage in that once
the field is calculated, it will not have to be calculated again, eliminating the
risk of faulty algorithms from incorrect evaluations.

low probability

acctno .
- of access

domicile ‘//
date opened<
balance «__|

———— very high probability

/ \ of access

acctno acctno
domicile balance
date opened

Figure 3.30 Further separation of data based on a wide disparity in the probability of

access.
introducing derived data
week 1 week 2 week3 .. week 52
pay pay pay | pay
taxes taxes taxes | taxes
FICA FICA FICA |.......... FICA
other other other |............. other
/ i _
annual pay,
taxes,
program | —————— FICA,
other
week 1 week 2 week3 | ... week 52
annual pay, pay pay pay | e, pay
taxes, taxes taxes taxes | oo, taxes
FICA, FICA FICA FICA | e, FICA
other other other other | oo other

Figure 3.31 Derived data, calculated once, then forever available.

One of the most innovative techniques in building a data warehouse is what can
be termed a “creative” index, or a creative profile (a term coined by Les Moore).
Figure 3.32 shows an example of a creative index. This type of creative index is
created as data is passed from the operational environment to the data ware-
house environment. Because each unit of data has to be handled in any case, it
requires very little overhead to calculate or create an index at this point.

The Data Warehouse and Design 109

creative indexes/profiles

@%% - =C

] % S Q=] .

lightly summarized data

existing systems

OQ
= O

creative indexes;
profiles

true archival

Figure 3.32 Examples of creative indexes:
« The top 10 customers in volume are __.
« The average transaction value for this extract was $nnn.nn.
« The largest transaction was $nnn.nn.
« The number of customers who showed activity without purchasing
was nn.

The creative index does a profile on items of interest to the end user, such as
the largest purchases, the most inactive accounts, the latest shipments, and so
on. If the requirements that might be of interest to management can be antici-
pated (admittedly, they cannot in every case), at the time of passing data to the
data warehouse, it makes sense to build a creative index.

A final technique that the data warehouse designer should keep in mind is the
management of referential integrity. Figure 3.33 shows that referential integrity
appears as “artifacts” of relationships in the data warehouse environment.

In the operational environment, referential integrity appears as a dynamic link
among tables of data. But because of the volume of data in a data warehouse,
because the data warehouse is not updated, and because the warehouse repre-
sents data over time and relationships do not remain static, a different
approach should be taken toward referential integrity. In other words, relation-
ships of data are represented by an artifact in the data warehouse environment.
Therefore, some data will be duplicated, and some data will be deleted when

data warehouse and referential integrity

In operational systems, the relationships between databases are
handled by referential integrity.

But, in the data warehouse environment:

¢ There is much more data than in the operational environment.

¢ Once in the warehouse, the data doesn't change.

¢ There is a need to represent more than one business rule over time.
* Data purges in the warehouse are not tightly coordinated.

[=[[=]
=) | =

subject

Artifacts in the data warehouse
environment:

] [[=]] (=] [[=]
Rl

e can be managed independently
e are very efficient to access
e do not require update

[/ [=]) [[=]] (=] | [=]
ElEEENE

b] [

Figure 3.33 Referential integrity in the data warehouse environment.

other data is still in the warehouse. In any case, trying to replicate referential
integrity in the data warehouse environment is a patently incorrect approach.

Snapshots in the Data Warehouse

Data warehouses are built for a wide variety of applications and users, such as
customer systems, marketing systems, sales systems, and quality control sys-

The Data Warehouse and Design 111

tems. Despite the very diverse applications and types of data warehouses, a
common thread runs through all of them. Internally, each of the data ware-
houses centers around a structure of data called a “snapshot.” Figure 3.34
shows the basic components of a data warehouse snapshot.

Snapshots are created as a result of some event occurring. Several kinds of
events can trigger a snapshot. One event is the recording of information about
a discrete activity, such writing a check, placing a phone call, the receipt of a
shipment, the completion of an order, or the purchase of a policy. In the case of
a discrete activity, some business occurrence has occurred, and the business
must make note of it. In general, discrete activities occur randomly.

The other type of snapshot trigger is time, which is a predictable trigger, such
as the end of the day, the end of the week, or the end of the month.

The snapshot triggered by an event has four basic components:

m A key
m A unit of time
m Primary data that relates only to the key

m Secondary data captured as part of the snapshot process that has no direct
relationship to the primary data or key

Of these components, only secondary data is optional.

The key can be unique or nonunique and it can be a single element of data. In a
typical data warehouse, however, the key is a composite made up of many ele-
ments of data that serve to identify the primary data. The key identifies the
record and the primary data.

The unit of time, such as year, month, day, hour, and quarter, usually (but not
always) refers to the moment when the event being described by the snapshot
has occurred. Occasionally, the unit of time refers to the moment when the cap-
ture of data takes place. (In some cases a distinction is made between when an

time £ /
key nonkey secondary data
primary
data

Figure 3.34 A data warehouse record of data is a snapshot taken at one moment in
time and includes a variety of types of data.

112

event occurs and when the information about the event is captured. In other
cases no distinction is made.) In the case of events triggered by the passage of
time, the time element may be implied rather than directly attached to the
snapshot.

The primary data is the nonkey data that relates directly to the key of the
record. As an example, suppose the key identifies the sale of a product. The ele-
ment of time describes when the sale was finalized. The primary data describes
what product was sold at what price, conditions of the sale, location of the sale,
and who were the representative parties.

The secondary data—if it exists—identifies other extraneous information cap-
tured at the moment when the snapshot record was created. An example of sec-
ondary data that relates to a sale is incidental information about the product
being sold (such as how much is in stock at the moment of sale). Other sec-
ondary information might be the prevailing interest rate for a bank’s preferred
customers at the moment of sale. Any incidental information can be added to a
data warehouse record, if it appears at a later time that the information can be
used for DSS processing. Note that the incidental information added to the
snapshot may or may not be a foreign key. A foreign key is an attribute found in
atable that is a reference to the key value of another table where there is a busi-
ness relationship between the data found in the two tables.

Once the secondary information is added to the snapshot, a relationship
between the primary and secondary information can be inferred, as shown in
Figure 3.35. The snapshot implies that there is a relationship between sec-
ondary and primary data. Nothing other than the existence of the relationship
is implied, and the relationship is implied only as of the instant of the snapshot.
Nevertheless, by the juxtaposition of secondary and primary data in a snapshot
record, at the instant the snapshot was taken, there is an inferred relationship
of data. Sometimes this inferred relationship is called an “artifact.” The snap-
shot record that has been described is the most general and most widely found
case of arecord in a data warehouse.

.<\\.
ox— —°

nonkey secondary
primary data data

Figure 3.35 The artifacts of a relationship are captured as a result of the implied rela-
tionship of secondary data residing in the same snapshot as primary data.

The Data Warehouse and Design 113

Meta Data

An important component of the data warehouse environment is meta data.
Meta data, or data about data, has been a part of the information processing
milieu for as long as there have been programs and data. But in the world of
data warehouses, meta data takes on a new level of importance, for it affords
the most effective use of the data warehouse. Meta data allows the end
user/DSS analyst to navigate through the possibilities. Put differently, when a
user approaches a data warehouse where there is no meta data, the user does
not know where to begin the analysis. The user must poke and probe the data
warehouse to find out what data is there and what data is not there and consid-
erable time is wasted. Even after the user pokes around, there is no guarantee
that he or she will find the right data or correctly interpret the data encoun-
tered. With the help of meta data, however, the end user can quickly go to the
necessary data or determine that it isn’t there.

Meta data then acts like an index to the contents of the data warehouse. It sits
above the warehouse and keeps track of what is where in the warehouse. Typi-
cally, items the meta data store tracks are as follows:

m Structure of data as known to the programmer
m Structure of data as known to the DSS analyst
m Source data feeding the data warehouse
Transformation of data as it passes into the data warehouse

-

m Data model
m Relationship between the data model and the data warehouse
-

History of extracts

Managing Reference Tables
in a Data Warehouse

When most people think of data warehousing, their thoughts turn to the nor-
mal, large databases constantly being used by organizations to run day-to-day
business such as customer files, sales files, and so forth. Indeed, these common
files form the backbone of the data warehousing effort. Yet another type of data
belongs in the data warehouse and is often ignored: reference data.

Reference tables are often taken for granted, and that creates a special prob-
lem. For example, suppose in 1995 a company has some reference tables and
starts to create its data warehouse. Time passes, and much data is loaded into

114

the data warehouse. In the meantime, the reference table is used operationally
and occasionally changes. In 1999, the company needs to consult the reference
table. A reference is made from 1995 data to the reference table. But the refer-
ence table has not been kept historically accurate, and the reference from 1995
data warehouse data to reference entries accurate as of 1999 produces very
inaccurate results. For this reason, reference data should be made time-variant,
just like all other parts of the data warehouse.

Reference data is particularly applicable to the data warehouse environment
because it helps reduce the volume of data significantly. There are many design
techniques for the management of reference data. Two techniques—at the
opposite ends of the spectrum—are discussed here. In addition, there are many
variations on these options.

Figure 3.36 shows the first design option, where a snapshot of an entire refer-
ence table is taken every six months This approach is quite simple and at first
glance appears to make sense. But the approach is logically incomplete. For
example, suppose some activity had occurred to the reference table on March
15. Say a new entry—ddw—was added, then on May 10 the entry for ddw was
deleted. Taking a snapshot every six months would not capture the activity that
transpired from March 15 to May 10.

A second approach is shown in Figure 3.37. At some starting point a snapshot is
made of a reference table. Throughout the year, all the activities against the ref-
erence table are collected. To determine the status of a given entry to the refer-
ence table at a moment in time, the activity is reconstituted against the
reference table. In such a manner, logical completeness of the table can be
reconstructed for any moment in time. Such a reconstruction, however, is a not
a trivial matter; it may represent a very large and complex task.

The two approaches outlined here are opposite in intent. The first approach is
simple but logically incomplete. The second approach is very complex but log-
ically complete. Many design alternatives lie between these two extremes.
However they are designed and implemented, reference tables need to be man-
aged as a regular part of the data warehouse environment.

Jan 1 July 1 Jan 1

AAA - Amber Auto AAA - Amber Auto AAA - Alaska Alt
AAT - Allison's AAR - Ark Electric AAG - German Air
AAZ - AutoZone BAE - Brit Eng AAR - Ark Electric
BAE - Brit Eng BAG - Bill's Garage BAE - Brit Eng

Figure 3.36 A snapshot is taken of a reference table in its entirety every six months—one
approach to the management of reference tables in the data warehouse.

The Data Warehouse and Design 115

Jan 1 Jan 1 - add TwWQ - Taiwan Dairy
AAA - Amber Auto Jan 16 - delete AAT

AAT - Allison's Feb 3 - add AAG - German Power
AAZ - AutoZone Feb 27 - change GYY - German Govt

BAE - Brit ENg |

A complete snapshot is taken Changes to the reference table are

on the first of the year. collected throughout the year and are
able to be used to reconstruct the table
at any moment in time.

Figure 3.37 Another approach to the management of reference data.

Cyclicity of Data—The Wrinkle of Time

One of the intriguing issues of data warehouse design is the cyclicity of data, or
the length of time a change of data in the operational environment takes to be
reflected in the data warehouse. Consider the data in Figure 3.38.

The current information is shown for Judy Jones. The data warehouse contains
the historical information about Judy. Now suppose Judy changes addresses.
Figure 3.39 shows that as soon as that change is discovered, it is reflected in the
operational environment as quickly as possible.

Once the data is reflected in the operational environment, the changes need to
be moved to the data warehouse. Figure 3.40 shows that the data warehouse
has a correction to the ending date of the most current record and a new record
has been inserted reflecting the change.

The issue is, how soon should this adjustment to the data warehouse data be
made? As a rule, at least 24 hours should pass from the time the change is
known to the operational environment until the change is reflected into the
data warehouse (see Figure 3.41). There should be no rush to try to move the
change into the data warehouse as quickly as possible. This “wrinkle of time”
should be implemented for several reasons.

The first reason is that the more tightly the operational environment is coupled
to the data warehouse, the more expensive and complex the technology is. A
24-hour wrinkle of time can easily be accomplished with conventional technol-
ogy. A 12-hour wrinkle of time can be accomplished but at a greater cost of
technology. A 6-hour wrinkle of time can be accomplished but at an even
greater cost in technology.

operational

J Jones
123 Main
Credit - AA

data
warehouse

J Jones
1989-1990
Apt B
Credit - B

J Jones has moved
to Rte 4, Austin, TX

Figure 3.38 What happens when the corporation finds out that J Jones has moved?

operational

J Jones
123 Medm— < |
Credit - AA

J Jones
1990-1991
Apt B
Credit - AA

J Jones
1992-present
123 Main
Credit - AA

. — Rte 4, Austin, TX

J Jones has moved
to Rte 4, Austin, TX

Figure 3.39 The first step is to change the operational address of J Jones.

The Data Warehouse and Design 117

data
warehouse

J Jones
1989-1990
Apt B
Credit - B

J Jones has moved
to Rte 4, Austin, TX

J Jones
1990-1991
Apt B
Credit - AA

1993 change the
J Jones L ending date
1992:preseﬁt*//
123 Main
Credit - AA insert
J Jones ‘//////////

1993 -present
Rte 4, Austin, TX
Credit - AA

Figure 3.40 The activities that occur in the data warehouse as a result of the change
of address.

operational data warehouse

“wrinkle of time”

24-hour delay

change change

Figure 3.41 There needs to be at least a 24-hour lag—a “wrinkle of time"—between the
time a change is known to the operational environment and the time when
the change is reflected into the data warehouse.

A more powerful reason for the wrinkle of time is that it imposes a certain dis-
cipline on the environments. With a 24-hour wrinkle there is no temptation to
do operational processing in the data warehouse and data warehouse process-
ing in the operational environment. But if the wrinkle of time is reduced—say,
to 4 hours—there is the temptation to do such processing, and that is patently
a mistake.

Another benefit of the wrinkle of time is opportunity for data to settle before it
is moved to the data warehouse. Adjustments can be made in the operational
environment before the data is sent to the data warehouse. If data is quickly
sent to the warehouse and then it is discovered that adjustments must be made,
those adjustments need to be made in both the operational environment and
the data warehouse environment.

Complexity of Transformation and Integration

At first glance, when data is moved from the legacy environment to the data
warehouse environment, it appears that nothing more is going on than simple
extraction of data from one place to the next. Because of the deceptive sim-
plicity, many organizations start to build their data warehouses manually. The
programmer looks at the movement of data from the old operational environ-
ment to the new data warehouse environment and declares “I can do that!” With
pencil and coding pad in hand, the programmer anxiously jumps into the cre-
ation of code within the first three minutes of the design and development of
the data warehouse.

First impressions, though, can be very deceiving. What at first appears to be
nothing more than the movement of data from one place to another quickly
turns into a large and complex task—far larger and more complex than the pro-
grammer thought.

Precisely what kind of functionality is required as data passes from the opera-
tional, legacy environment to the data warehouse environment? The following
lists some of the necessary functionality:

m The extraction of data from the operational environment to the data ware-
house environment requires a change in technology. This normally
includes reading the operational DBMS technology, such as IMS, and writ-
ing the data out in newer, data warehouse DBMS technology, such as
Informix. There is a need for a technology shift as the data is being moved.
And the technology shift is not just one of a changing DBMS. The operating
system changes, the hardware changes, and even the hardware-based
structure of the data changes.

The Data Warehouse and Design 119

m The selection of data from the operational environment may be very com-
plex. To qualify a record for extraction processing, several coordinated
lookups to other records in a variety of other files may be necessary,
requiring keyed reads, connecting logic, and so on. In some cases, the
extraneous data cannot be read in anything but the online environment.
When this is the case, extraction of data for the data warehouse must
occur in the online operating window, a circumstance to be avoided if at all
possible.

m Operational input keys usually need to be restructured and converted
before they are written out to the data warehouse. Very seldom does an
input key remain unaltered as it is read in the operational environment and
written out to the data warehouse environment. In simple cases, an ele-
ment of time is added to the output key structure. In complex cases, the
entire input key must be rehashed or otherwise restructured.

m Nonkey data is reformatted as it passes from the operational environment
to the data warehouse environment. As a simple example, input data about
date is read as YYYY/MM/DD and is written to the output file as
DD/MM/YYYY. (Reformatting of operational data before it is ready to go
into a data warehouse often becomes much more complex than this simple
example.)

m Data is cleansed as it passes from the operational environment to the data
warehouse environment. In some cases, a simple algorithm is applied to
input data in order to make it correct. In complex cases, artificial intelli-
gence subroutines are invoked to scrub input data into an acceptable out-
put form. There are many forms of data cleansing, including domain
checking, cross-record verification, and simple formatting verification.

m Multiple input sources of data exist and must be merged as they pass into
the data warehouse. Under one set of conditions the source of a data ware-
house data element is one file, and under another set of conditions the
source of data for the data warehouse is another file. Logic must be spelled
out to have the appropriate source of data contribute its data under the
right set of conditions.

m When there are multiple input files, key resolution must be done before the
files can be merged. This means that if different key structures are used in
the different input files, the merging program must have the logic embed-
ded that allows resolution.

m With multiple input files, the sequence of the files may not be the same or
even compatible. In this case, the input files need resequenced. This is not
a problem unless many records must be resequenced, which unfortunately
is almost always the case.

120

m Multiple outputs may result. Data may be produced at different levels of

summarization by the same data warehouse creation program.

Default values must be supplied. Under some conditions an output value in
the data warehouse will have no source of data. In this case, the default
value to be used must be specified.

The efficiency of selection of input data for extraction often becomes a
real issue. Consider the case where at the moment of refreshment there is
no way to distinguish operational data that needs to be extracted from
operational data that does not need to be extracted. When this occurs, the
entire operational file must be read. Reading the entire file is especially
inefficient because only a fraction of the records is actually needed. This
type of processing causes the online environment to be active, which fur-
ther squeezes other processing in the online environment.

Summarization of data is often required. Multiple operational input records
are combined into a single “profile” data warehouse record. To do summa-
rization, the detailed input records to be summarized must be properly
sequenced. In the case where different record types contribute to the sin-
gle summarized data warehouse record, the arrival of the different input
record types must be coordinated so that a single record is produced.

Renaming of data elements as they are moved from the operational envi-
ronment to the data warehouse must be tracked. As a data element moves
from the operational environment to the data warehouse environment, it
usually changes its name. Documentation of that change must be made.

The input records that must be read have exotic or nonstandard formats.
There are a whole host of input types that must be read, then converted on
entry into the data warehouse:

m Fixed-length records
m Variable-length records
m (Occurs depending on
m (Occurs clause

Conversion must be made. But the logic of conversion must be specified,
and the mechanics of conversion (what the “before” and “after” look like)
can be quite complex. In some cases, conversion logic becomes very
twisted.

Perhaps the worst of all: Data relationships that have been built into old
legacy program logic must be understood and unraveled before those files
can be used as input. These relationships are often Byzantine, arcane, and
undocumented. But they must patiently be unwound and deciphered as the
data moves into the data warehouse. This is especially difficult when there

The Data Warehouse and Design 121

is no documentation or when the documentation that exists is out-of-date.
And, unfortunately, on many operational legacy systems, there is no docu-
mentation. There is an old saying: Real programmers don’t do documenta-
tion.

m Data format conversion must be done. EBCDIC to ASCII (or vice versa)
must be spelled out.

m Massive volumes of input must be accounted for. Where there is only a
small amount of data being entered as input, many design options can be
accommodated. But where many records are being input, special design
options (such as parallel loads and parallel reads) may have to be used.

m The design of the data warehouse must conform to a corporate data
model. As such, there is order and discipline to the design and structuring
of the data warehouse. The input to the data warehouse conforms to
design specifications of an application that was written a long time ago.
The business conditions behind the application have probably changed 10
times since the application was originally written. Much undocumented
maintenance was done to the application code. In addition, the application
probably had no integration requirements to fit with other applications. All
of these mismatches must be accounted for in the design and building of
the data warehouse.

m The data warehouse reflects the historical need for information, while the
operational environment focuses on the immediate, current need for infor-
mation. This means that an element of time may need to be added as the
data moves from the operational environment to the data warehouse
environment.

m The data warehouse addresses the informational needs of the corporation,
while the operational environment addresses the up-to-the-second clerical
needs of the corporation.

m Transmission of the newly created output file that will go into the data
warehouse must be accounted for. In some cases, this is very easy to do; in
other cases, it is not simple at all, especially when operating systems are
crossed. Another issue is the location where the transformation will take
place. Will the transformation take place on the machine hosting the opera-
tional environment? Or will raw data be transmitted and the transforma-
tion take place on the machine hosting the data warehouse?

And there is more. This list is merely a sampling of the complexities facing the
programmer when setting off to load the data warehouse.

In the early days of data warehouse, there was no choice but to build the pro-
grams that did the integration by hand. Programmers using COBOL, C, and

122 | L

other languages wrote these. But soon people noticed that these programs were
tedious and repetitive. Furthermore, these programs required ongoing mainte-
nance. Soon technology appeared that automated the process of integrating
data from the operational environment, called extract/transform/load (ETL)
software. The first ETL software was crude, but it quickly matured to the point
where almost any transformation could be handled.

ETL software comes in two varieties—software that produces code and soft-
ware that produces a runtime module that is parameterized. The code produc-
ing software is much more powerful than the runtime software. The code
producing software can access legacy data in its own format. The runtime soft-
ware usually requires that legacy data be flattened. Once flattened, the runtime
module can read the legacy data. Unfortunately, much intelligence is lost in the
flattening of the legacy data.

In any case, ETL software automates the process of converting, reformatting,
and integrating data from multiple legacy operational sources. Only under very
unusual circumstances does attempting to build and maintain the opera-
tional/data warehouse interface manually make sense.

Triggering the Data Warehouse Record

The basic business interaction that causes the data warehouse to become pop-
ulated with data is one that can be called an EVENT/SNAPSHOT interaction. In
this type of interaction, some event (usually in the operational environment)
triggers a snapshot of data, which in turn is moved to the data warehouse envi-
ronment. Figure 3.42 symbolically depicts an EVENT/SNAPSHOT interaction.

Events

As mentioned earlier in the chapter, the business event that triggers a snapshot
might be the occurrence of some notable activity, such as the making of a sale,

EVENT SNAPSHOT

nonkey secondary
Q .
X primary data data

Figure 3.42 Every snapshot in the data warehouse is triggered by some event.

The Data Warehouse and Design 123

the stocking of an item, the placing of a phone call, or the delivery of a ship-
ment. This type of business event is called an activity-generated event. The
other type of business event that may trigger a snapshot is the marking of the
regular passage of time, such as the ending of the day, the ending of the week,
or the ending of the month. This type of business event is called a time-gener-
ated event.

Whereas events caused by business activities are random, events triggered by
the passage of time are not. The time-related snapshots are created quite regu-
larly and predictably.

Components of the Snapshot

Mentioned earlier in this chapter, the snapshot placed in the data warehouse
normally contains several components. One component is the unit of time that
marks the occurrence of the event. Usually (not necessarily always) the unit of
time marks the moment of the taking of the snapshot. The next component of
the snapshot is the key that identifies the snapshot. The third normal compo-
nent of a data warehouse snapshot is the primary, nonkey data that relates to
the key. Finally, an optional component of a snapshot is secondary data that has
been incidentally captured as of the moment of the taking of the snapshot and
placed in the snapshot. As mentioned, sometimes this secondary data is called
an artifact of the relationship.

In the simplest case in a data warehouse, each operational activity important to
the corporation will trigger a snapshot. In this case, there is a one-to-one corre-
spondence between the business activities that have occurred and the number
of snapshots that are placed in the data warehouse. When there is a one-to-one
correspondence between the activities in the operational environment and the
snapshots in the data warehouse, the data warehouse tracks the history of all
the activity relating to a subject area.

Some Examples

An example of a simple snapshot being taken every time there is an operational,
business activity might be found in a customer file. Every time a customer
moves, changes phone numbers, or changes jobs, the data warehouse is
alerted, and a continuous record of the history of the customer is made. One
record tracks the customer from 1989 to 1991. The next record tracks the cus-
tomer from 1991 to 1993. The next record tracks the customer from 1993 to the
present. Each activity of the customer results in a new snapshot being placed in
the data warehouse.

124 | K L

As another example, consider the premium payments on an insurance policy.
Suppose premiums are paid semiannually. Every six months a snapshot record
is created in the data warehouse describing the payment of the premium—
when it was paid, how much, and so on.

Where there is little volume of data, where the data is stable (i.e., the data
changes infrequently), and where there is a need for meticulous historical
detail, the data warehouse can be used to track each occurrence of a business
event by storing the details of every activity.

Profile Records

But there are many cases in which data in the data warehouse does not meet
these criteria. In some cases, there will be massive volumes of data. In other
cases, the content of data changes frequently. And in still other cases, there is
no business need for meticulous historical detail of data. When one or more of
these conditions prevail, a different kind of data warehouse record, called a
profile or an aggregate record, can be created. A profile record groups many dif-
ferent, detailed occurrences of operational data into a single record. The single
profile record represents the many operational records in aggregation.

Profile records represent snapshots of data, just like individual activity records.
The difference between the two is that individual activity records in the data
warehouse represent a single event, while profile records in the data ware-
house represent multiple events.

Like individual activity records, profile records are triggered by some event-
either a business activity or the marking of the regular passage of time. Fig-
ure 3.43 shows how an event causes the creation of a profile record.

A profile record is created from the grouping of many detailed records. As an
example, a phone company may at the end of the month take all of a customer’s
phone activities for the month and wrap those activities into a single customer
record in the data warehouse. In doing so, a single representative record can be
created for the customer that reflects all his or her monthly activity. Or a bank
may take all the monthly activities of a customer and create an aggregate data
warehouse record that represents all of his or her banking activities for the
month.

The aggregation of operational data into a single data warehouse record may
take many forms; for example:

m Values taken from operational data can be summarized.

The Data Warehouse and Design

125

m Units of operational data can be tallied, where the total number of units is

captured.

m Units of data can be processed to find the highest, lowest, average, and so

forth.

m First and last occurrences of data can be trapped.

m Data of certain types, falling within the boundaries of several parameters,

can be measured.

m Data that is effective as of some moment in time can be trapped.

m The oldest and the youngest data can be trapped.

The ways to perform representative aggregation of operational data are limit-

less.

Another very appealing benefit to the creation of profile records is organizing
the data in a compact and convenient form for the end user to access and ana-
lyze. Done properly, the end user is quite comfortable with the distillation of
many records into a single record because he or she has to look only in a single
place to find what is needed. By prepackaging the data into an aggregate record
in the data warehouse, the data architect saves the end user from tedious

processing.

operational

customer

call 1

call 2

call 3

call 4

call n

The monthly call records are
aggregated in order to provide a
single composite record.

Figure 3.43 The creation of a profile record from a series of detailed records.

data warehouse

Customer/month

126 | K

Managing Volume

In many cases, the volume of data to be managed in the data warehouse is a sig-
nificant issue. Creating profile records is an effective technique for managing
the volume of data. The reduction of the volume of data possible in moving
detailed records in the operational environment into a profile record is remark-
able. It is possible (indeed, normal) to achieve a 2-to-3 order-of-magnitude
reduction of data by the creation of profile records in a data warehouse.
Because of this benefit, the ability to create profile records is a powerful one
that should be in the portfolio of every data architect.

There is, however, a downside to profiling records in the data warehouse.
Whenever the use of the profile technique is contemplated, note that a certain
capability or functionality of the data warehouse is lost. Of necessity, detail is
lost whenever aggregation is done. Keep in mind, however, that losing detail is
not necessarily a bad thing. The designer of the profile record needs to ensure
that the lost detail is not important to the DSS analyst who will ultimately be
using the data warehouse. The data architect’s first line of defense (and easily
the most effective one) is to ensure that such detail is not terribly important is
to build the profile records iteratively. By doing so, the data architect has the
maneuverability to make changes gracefully. The first iteration of the design of
the contents of the profile record suggests the second iteration of design, and
so forth. As long as the iterations of data warehouse development are small and
fast, there is little danger the end user will find many important requirements
left out of the profile record. The danger comes when profile records are cre-
ated and the first iteration of development is large. In this case, the data archi-
tect probably will paint himself or herself into a nasty corner because
important detail will have been omitted.

A second approach (which can be used in conjunction with the iterative
approach) to ensure that important detail is not permanently lost is to create an
alternative level of historical detail along with the profile record, as shown in
Figure 3.44. The alternative detail is not designed to be used frequently; it is
stored on slow, inexpensive, sequential storage and is difficult to get to and
awkward to work with. But the detail is there should it be needed. When man-
agement states that they must have a certain detail, however arcane, it can
always be retrieved, albeit at a cost of time and money.

The Data Warehouse and Design 127

EIS
DSS
L data processing
operational j
data
detailed
archival

S data \
reporting done on
an exception basis
Figure 3.44 An alternative to the classical data warehouse architecture—all the detail

that is needed is available while good performance for most DSS process-
ing is the norm.

Creating Multiple Profile Records

Multiple profile records can be created from the same detail. In the case of a
phone company, individual call records can be used to create a customer pro-
file record, a district traffic profile record, a line analysis profile record, and so
forth.

The profile records can be used to go into the data warehouse or a data mart
that is fed by the data warehouse. When the profile records go into a data ware-
house, they are for general-purpose use. When the profile records go into the
data mart, they are customized for the department that uses the data mart.

The aggregation of the operational records into a profile record is almost
always done on the operational server because this server is large enough to
manage volumes of data and because that is where the data resides in any case.
Usually creating the profile record involves sorting and merging data. Once the
process of creating the snapshot becomes complicated and drawn out, whether
the snapshot should be taken at all becomes questionable.

The meta data records written for profile records are very similar to the meta
data records written for single activity snapshots with the exception that the
process of aggregating the records becomes an important piece of meta data.
(Technically speaking, the record of the process of aggregation is “meta
process” information, not “meta data” information.)

128 | K

Going from the Data Warehouse
to the Operational Environment

The operational environment and the data warehouse environment are about as
different as any two environments can be in terms of content, technology,
usage, communities served, and a hundred other ways. The interface between
the two environments is well documented. Data undergoes a fundamental
transformation as it passes from the operational environment to the data ware-
house environment. For a variety of reasons—the sequence in which business
is conducted, the high performance needs of operational processing, the aging
of data, the strong application orientation of operational processing, and so
forth—the flow of data from the operational environment to the data ware-
house environment is natural and normal. This normal flow of data is shown in
Figure 3.45.

The question occasionally arises, is it possible for data to pass from the data
warehouse environment to the operational environment? In other words, can
data pass in a reverse direction from that normally experienced? From the
standpoint of technology, the answer certainly is yes, such a passage of data is
technologically possible. Although it is not normal, there are a few isolated cir-
cumstances in which data does indeed flow “backward.”

4
¢

\\/ data
g warehouse

legacy applications

Figure 3.45 The normal flow of data in the legacy application/data warehouse archi-
tected environment.

The Data Warehouse and Design 129

Direct Access of Data Warehouse Data

Figure 3.46 illustrates the dynamics of the simplest of those circumstances-the
direct access of data from the data warehouse by the operational environment.
A request has been made within the operational environment for data that
resides in the data warehouse. The request is transferred to the data warehouse
environment, and the data is located and transferred to the operational envi-
ronment. Apparently, from the standpoint of dynamics, the transfer could not
be easier.

There are a number of serious and uncompromising limitations to the scenario
of the direct access of data in the data warehouse. Some of these are as follows:

m The request must be a casual one in terms of response time. It may take as
long as 24 hours for it to be satisfied. This means that the operational pro-
cessing that requires the data warehouse data is decidedly not of an online
nature.

m The request for data must be for a minimal amount of data. The data being
transferred is measured in terms of bytes, not megabytes or gigabytes.

m The technology managing the data warehouse must be compatible with the
technology managing the operational environment in terms of capacity,
protocol, and so on.

m The formatting of data after it is retrieved from the data warehouse in
preparation for transport to the operational environment must be nonexis-
tent (or minimal).

legacy application

query

o warehouse
[}
[m]

results of query

OgO

Figure 3.46 A direct query against the data warehouse from the legacy applications
environment.

130 | K

These conditions preclude most data ever being directly transferred from the
data warehouse to the operational environment. It is easy to see why there is a
minimal amount of backward flow of data in the case of direct access.

Indirect Access of Data Warehouse Data

Because of the severe and uncompromising conditions of transfer, direct
access of data warehouse data by the operational environment is a rare occur-
rence. Indirect access of data warehouse data is another matter entirely.
Indeed, one of the most effective uses of the data warehouse is the indirect
access of data warehouse data by the operational environment. Some examples
of indirect access of data warehouse data follow.

An Airline Commission
Calculation System

One effective indirect use of data warehouse data occurs in the airline environ-
ment. Consider, for example, an airline ticketing transaction. A travel agent has
contacted the airline reservation clerk on behalf of a customer. The customer
has requested a ticket for a flight and the travel agent wants to know the
following:

m [s there a seat available?
m What is the cost of the seat?

m What is the commission paid to the travel agent?

If the airline pays too much of a commission, it will get the agent’s business, but
it will lose money. If the airline pays too little commission, the travel agent will
“shop” the ticket and the airline will lose it to another airline that pays a larger
commission. It is in the airline’s best interest to calculate the commission it
pays very carefully because the calculation has a direct effect on its bottom
line.

The interchange between the travel agent and the airline clerk must occur in a
fairly short amount of time—within two to three minutes. In this two-to-three-
minute window the airline clerk must enter and complete several transactions:

m Are there any seats available?

m [s seating preference available?

m What connecting flights are involved?
-

Can the connections be made?

The Data Warehouse and Design 131

m What is the cost of the ticket?

m What is the commission?

If the response time of the airline clerk (who is running several transactions
while carrying on a conversation with the travel agent) starts to be excessive,
the airline will find that it is losing business merely because of the poor
response time. It is in the best interest of the airline to ensure brisk response
time throughout the dialogue with the travel agent.

The calculation of the optimal commission becomes a critical component of the
interchange. The optimal commission is best calculated by looking at a combi-
nation of two factors—current bookings and the load history of the flight. The
current bookings tell how heavily the flight is booked, and the load history yields
a perspective of how the flight has been booked in the past. Between current
bookings and historical bookings an optimal commission can be calculated.

Though tempting to perform the bookings and flight history calculations online,
the amount of data that needs to be manipulated is such that response time suf-
fers if they are calculated in this manner. Instead, the calculation of commission
and analysis of flight history are done offline, where there are ample machine
resources. Figure 3.47 shows the dynamics of offline commission calculation.

current historical
bookings bookings

travel agent
airline
reservation
clerk

flight status
/ calculations

flight
date
average booking for date

Figure 3.47 The flight status file is created periodically by reading the historical data. It
is then a very quick matter for the airline agent to get current bookings and
to compare those bookings against the historical average.

132 | L

The offline calculation and analysis are done periodically, and a small, easy-to-
access flight status table is created. When the airline clerk has to interact with
the travel agent, it is an easy matter to look at current bookings and the flight
status table. The result is a very fast and smooth interaction with the travel
agent and the ability to use the data stored in the data warehouse.

A Retail Personalization System

Another example of the indirect use of data warehouse data in the operational
environment occurs in the retail personalization system. In this system, a cus-
tomer reads a catalog or other flyer issued by the retailer. The customer is
inspired to make a purchase or to at least inquire about the catalog. A phone
call to the retailer ensues.

The interchange is about five to eight minutes long. During this time the retail
sales representative has a fair amount of processing to do—identify the cus-
tomer, take down the specifics of the order, and so forth. The response time is
critical; otherwise, the customer will lose interest.

While the customer is placing the order or making an inquiry, the retail sales
representative finds out some other information relevant to the interchange,
such as the following:

m The last time the customer made a purchase

m The last type of purchase made

m The market segment(s) in which the customer belongs

While engaging the customer in conversation, the sales representative says
such things as these:

m “I see it’s been since February that we last heard from you.”

m “How was that blue sweater you purchased?”

m “Did the problems you had with the pants get resolved?”

In short, the retail sales representative is able to personalize the conversation.
The personalization makes the customer more amenable to purchases.

In addition, the retail sales clerk has market segment information available,
such as the following:

m DMale/female

m Professional/other
m (City/country

m Children

The Data Warehouse and Design 133

Ages
Sex
Sports
Fishing
Hunting
Beach

Because the phone call can be personalized and the direct marketing segment
for a customer is available when the customer calls in, the retail sales repre-
sentative is able to ask pointed questions, such as these:

m “Did you know we have an unannounced sale on swimsuits?”
m “We just got in some Italian sunglasses that I think you might like.”

m “The forecasters predict a cold winter for duck hunters. We have a special
on waders right now.”

The customer has already taken the time to make a phone call. The personal-
ization of the phone call and the knowledge of what products the customer is
interested in give the retailer a very good chance at raising revenue with no fur-
ther outlay of cash or advertising. The personalization of the phone call is
achieved by the indirect use of the data warehouse. Figure 3.48 shows the
dynamics of how personalization is achieved.

In the background (i.e., in the data warehouse environment), an analysis pro-
gram is constantly reading and analyzing customer records. This program scans
and analyzes historical customer data in a very sophisticated manner. Periodi-
cally, the analysis program spins off a file to the operational environment that
contains such information as the following:

m Last purchase date
m Last purchase type

m Market analysis/segmenting

When the customer rings in, the online prepared file is waiting for use by the
retail sales representative.

Credit Scoring

Another example of the indirect use of a data warehouse in the operational
environment is credit scoring in the banking/finance environment. Credit scor-
ing refers to qualifying (or not qualifying) a person for a loan. Say, for example,
a customer walks up to the teller’s window and asks for a loan. The teller takes

134

T
S

catalog
e customer history
e sales history

é%} e product history
* vendor history
consumer g

telemarketer

market analysis

/ programs

customer history file

customer id

e last purchase date

e last purchase item

e product marketing category

Figure 3.48 The customer history is at the disposal of the telemarketer at a moment's
notice.

in some basic information about the customer and decides whether the loan
should be approved. The interchange occurs in a very short amount of time—5
to 10 minutes.

To determine whether the loan should be approved, a certain amount of pro-
cessing must be performed. The loan request is first put through a simple
screening process. If the loan is for a small enough amount and if the person
has a stable financial background, then it may be approved with no further pro-
cessing. If the loan is for a fair amount and/or the customer does not have a sta-
ble, predictable background, then a further check is required.

The background check relies on the data warehouse. In truth, the check is an
eclectic one, in which many aspects of the customer are investigated, such as
the following:

m Past payback history

m Home/property ownership

m Financial management

The Data Warehouse and Design 135

Net worth

|

m Gross income
m (Gross expenses
]

Other intangibles

This extensive background check requires quite a bit of diverse historical data.
Completing this part of the loan qualification process requires more than a few
minutes.

To satisfy the most customers in the shortest amount of time, an analysis pro-
gram is written. Figure 3.49 shows how the analysis program fits in with the
other components of credit scoring. The analysis program is run periodically
and produces a prequalified file for use in the operational environment. In addi-
tion to other data, the prequalified file includes the following:

m Customer identification
m Approved credit limit

m Special approval limit

Now when the customer wishes to apply for and get aloan, in a high-performance,
online mode the teller qualifies (or does not qualify) the loan request from the

e account history

* repayment history
customer teller * job history

e salary history
¢ asset management history

preapproved preapproval/preanalysis
customer file program

Figure 3.49 The preapproved customer credit file is accessible by the bank teller in an
instant.

136 | K

customer. Only if the customer asks for a loan for an amount greater than the
preapproved limit does there need to be an interaction by a loan officer.

Indirect Use of Data Warehouse Data

There is, then, an emerging pattern to the indirect use of data warehouse data.
That pattern is shown in Figure 3.50.

The data warehouse is analyzed periodically by a program that examines
relevant characteristics and criteria. The analysis then creates a small file in
the online environment that contains succinct information about the busi-
ness of the enterprise. The small online file is used quickly and efficiently,
fitting in with the style of the other processing that occurs in the operational
environment.

Following are a few considerations of the elements of the indirect use of data
warehouse data:

m The analysis program:
m Has many characteristics of artificial intelligence
m Has free rein to run on any data warehouse data that is available

m [s run in the background, where processing time is not an issue (or at
least not a large issue)

m [s run in harmony with the rate at which data warehouse changes

online
environment

data
warehouse

Ej ‘ analysis/
preparation
program

Figure 3.50 The way that data warehouse data is made available to the online opera-
tional environment—indirectly.

The Data Warehouse and Design 137

m The periodic refreshment:
m QOccurs infrequently
m (Operates in a replacement mode

m Moves the data from the technology supporting the data warehouse to
the technology supporting the operational environment

m The online preanalyzed data file:
m (Contains only a small amount of data per unit of data

m DMay contain collectively a large amount of data (because there may be
many units of data)

Contains precisely what the online clerk needs
Is not updated, but is periodically refreshed on a wholesale basis
Is part of the online high-performance environment

Is efficient to access

Is geared for access of individual units of data, not massive sweeps of
data

Star Joins

Data warehouse design is decidedly a world in which a normalized approach is
the proper one. There are several very good reasons why normalization pro-
duces the optimal design for a data warehouse:

m [t produces flexibility.
m [t fits well with very granular data.
m [t is not optimized for any given set of processing requirements.

m [t fits very nicely with the data model.

Of course, some small accommodations can be made away from the normalized
model when the entire organization views the data in the same way. For exam-
ple, suppose that monthly data is kept and when the organization looks at the
monthly data, it looks at all monthly data. In this case, storing all months
together makes sense.

A different approach to database design sometimes mentioned in the context of
data warehousing is the multidimensional approach. This approach entails star
joins, fact tables, and dimensions. The multidimensional approach applies
exclusively to data marts, not data warehouses. Unlike data warehouses, data
marts are very much shaped by requirements. To build a data mart, you have to

138

know a lot about the processing requirements that surround the data mart.
Once those requirements are known, the data mart can be shaped into an opti-
mal star join structure. But data warehouses are essentially different because
they serve a very large community, and as such, they are not optimized for the
convenience or performance of any one set of requirements. Data warehouses
are shaped around the corporate requirements for information, not the depart-
mental requirements for information. Therefore, creating a star join for the data
warehouse is a mistake because the end result will be a data warehouse opti-
mized for one community at the expense of all other communities.

The appeal of the multidimensional approach to database design for data marts
begins with the data model. For all of the practical use of a data model as one
of the foundations of design, there are some shortcomings. Consider the simple
data model in Figure 3.51.

The data model in the figure shows four simple entities with relationships. If all
that is considered is the data model for database design, the inference can be
drawn that all entities are equal. In other words, from a design standpoint the
data model appears to make all entities peers with each other. Approaching
database design for the data warehouse solely from the perspective of the data
model produces a “flat” effect. In actuality, for a variety of reasons, entities in
the world of data marts are anything but peers. Some entities demand their own
special treatment.

To see why the data model perspective of the data and the relationships in an
organization are distorted, consider the three-dimensional perspective shown
in Figure 3.52. Here entities representing vendor, customer, product, and ship-
ment will be sparsely populated, while entities for orders will be heavily popu-
lated. There will be many more occurrences of data residing in the table or
tables representing the order entity than there will be for any other entity.

vendor customer

product

order |
shipment

Figure 3.51 A simple two-dimensional data model gives the impression that all entities
are equal.

The Data Warehouse and Design 139

Because of the massive volume of data populating entity order, a different
design treatment is required.

The design structure that is required to manage large amounts of data residing
in an entity in a data mart is called a “star join.” As a simple example of a star
join, consider the data structure shown in Figure 3.53. ORDER is at the center
of the star join and is the entity that will be heavily populated. Surrounding
ORDER are the entities PART, DATE, SUPPLIER, and SHIPMENT. Each of the
surrounding entities will have only a modest number of occurrences of data.
The center of the star join-ORDER-is called the “fact table.” The surrounding
entities—PART, DATE, SUPPLIER, and SHIPMENT—are called “dimension
tables.” The fact table contains unique identifying data for ORDER, as well as
data unique to the order itself. The fact table also contains prejoined foreign
key references to tables outlying itself-the dimension tables. The foreign key
relationships may be accompanied by nonforeign key information inside the
star join if, in fact, the nonforeign key information is used frequently with the
fact table. As an example, the description of a PART may be stored inside
the fact table along with the PART number if, in fact, the description is used fre-
quently as part of ORDER processing.

There can be any number of foreign key relationships to the dimension tables.
A foreign key relationship is created when there is a need to examine the for-
eign key data along with data in the fact table.

One of the interesting aspects of the star join is that in many cases textual data
is divided from numeric data. Consider the diagram in Figure 3.54. Textual data
often ends up in the dimension tables, and numeric data ends up in the fact
table. Such a division occurs in almost every case.

The benefit of creating star joins is to streamline data for DSS processing. By
prejoining data and by creating selective redundancy, the designer greatly

% shipment

customer order product

Figure 3.52 A three-dimensional perspective of the entities shows that the entities are
anything but equals. Some contain far more occurrences of the data than
others.

order
vendor order id shipment
] order data order id

Vengo”(;j t order data order data
vendor data
vendor data \\ vendor id order data

nonkey data

cust id

nonkey data

roduct
customer order id p

cust id nonkey data product id
cust data product id product data
cust data nonkey data product data

Figure 3.53 A simple star join in which the entity ORDER is populated with many occur-

rences and other entities are prejoined with the data.

dimension fact table dimension
tables tables
order
vendor order id shipment
) order data order id
Vengo”(;j t order data ordzr data
vendor data
vendor data \\ vendor id order data
nonkey data
cust id
nonkey data
roduct
customer order id p
cust id nonkey data product id
cust data product id product data
cust data nonkey data product data
numeric character

Figure 3.54 In many cases, the fact table is populated by numeric data and foreign
keys, while the dimension table is populated by character data.

The Data Warehouse and Design 141

simplifies and streamlines data for access and analysis, which is exactly what is
needed for the data mart. Note that if star joins were used outside of the DSS
data mart environment, there would be many drawbacks. Outside the DSS data
mart environment, where update occurs and where data relationships are man-
aged up to the second, a star join most likely would be a very cumbersome
structure to build and maintain. But because the data mart is a load-and-access
environment, because the data mart contains historical data, and because mas-
sive amounts of data need to be managed, the star join data structure is ideal for
the processing that occurs inside the star join.

The star join then has its rightful place as a foundation for data mart design. Fig-
ure 3.55 shows how the star join and the data model fit as foundations for data
mart DSS design. The star join applies as a design foundation to the very large
entities that will exist in the data mart. The data model applies as a design
foundation to the nonvoluminous entities found in the data mart.

dimension fact dimension
order
vendor order id shipment
i order data rder id

Vengor Ic? t order data grdgr data
vendor data
vendor data \\ vendor id order data

nonkey data

cust id

nonkey data

roduct
customer order id p

cust id nonkey data product id
cust data product id product data
cust data nonkey data product data

star join

Figure 3.55 Classical data modeling applies to the dimension tables (i.e., the nonpopu-
lous entities) and star join design applies to the fact tables (i.e., the popu-
lous entities).

142

One of the issues of data warehouses and data marts is how data gets from the
data warehouse to the data mart. Data in the data warehouse is very granular.
Data in the data mart is very compact and summarized. Periodically data must
be moved from the data warehouse to the data mart. This movement of data
from the data warehouse to the data mart is analogous to the movement of data

into the data warehouse from the operational legacy environment.

Data Marts: A Substitute for a Data Warehouse?

There is an argument in the IT community that says that a data warehouse is
expensive and troublesome to build. Indeed, a data warehouse requires
resources in the best of cases. But building a data warehouse is absolutely worth
the effort. The argument for not building a data warehouse usually leads to build-
ing something short of a data warehouse, usually a data mart. The premise is that
you can get a lot out of a data mart without the high cost and investment for a
data warehouse.

From a short-term perspective, there is some merit to this argument. But from
a long-term perspective, a data mart is never a substitute for a data warehouse.
Figure 3.56 shows why.

The structure of the data found in the data mart is shaped by the particular
requirements of the department. The finance department will have one structure
for its data mart, the sales department will have another structure for its data
mart, and the marketing department will have another data structure for its data
mart. All of their structures will be fed from the granular data found in the data
warehouse.

The data structure found in any given data mart is different from the data
structure for any other data mart. For example, the sales data mart data structure
will be different from the marketing data mart data. The data mart structures are
typically known as star joins and contain fact tables and dimensions. The data
mart structures are typically known as multidimensional structures and are
served by OLAP technology.

Because there is a different data structure for each data mart, making any data
mart into a data warehouse doesn’t make sense. When a data mart star join is
made into a data warehouse, the data warehouse is optimal for one data mart
and its users and is not optimal (or really usable) for anyone else. Data marts
produce structures that are not reusable except by someone operating in the
department that is optimized.

Data mart data structures—in general, across the enterprise—are not reusable,
are not flexible, are not useful as a foundation for reconciliation, and are not
standing ready for a new set of unknown requirements. But the normalized gran-
ular data found in a data warehouse is indeed all of those things.

The Data Warehouse and Design 143

marketing

finance

Figure 3.56 The relationship between the data warehouse and the data mart.

Data warehouse data must be selected, accessed, and then reshaped to meet
the needs of the data mart. Often the data mart data resides in cubes. The cubes
need to be formed, and many different calculations need to be performed on
the detailed data that resides in the data warehouse. In short, a nontrivial
process occurs as data is passed from a normalized world into a multidimen-
sional world.

One of the important issues here is how much data must be accessed and how
often is the refreshment process to be performed.

Supporting the ODS

In general there are three classes of ODS—class I, class II, and class III. In a
class I ODS, updates of data from the operational environment to the ODS are
synchronous. In a class II ODS, the updates between the operational environ-
ment and the ODS occur within a two-to-three-hour time frame. And in a type
IIT ODS, the synchronization of updates between the operational environment
and the ODS occurs overnight. But there is another type of ODS structure—a

LN CHAPTERS

class IV ODS, in which updates into the ODS from the data warehouse are
unscheduled. Figure 3.57 shows this support.

The data in the data warehouse is analyzed, and periodically the data is placed
in the ODS. The data that is shipped to the ODS is shipped in the form of profile
data, which is data that represents many different physical occurrences of data.
As a simple example of profile data, suppose the details of a customer’s trans-
actions are analyzed. The customer has been active for several years. The
analysis of the transactions in the data warehouse is used to produce the fol-
lowing profile information about a single customer:

m Customer name and ID

m Customer volume—high/low

m Customer profitability—high/low

m Customer frequency of activity—very frequent/very infrequent

m Customer likes/dislikes (fast cars, beautiful women, single malt scotch)
Each of the categories of information found in the profile record is created
from the examination and analysis of the many detailed records found in the

data warehouse. There is then a very fundamental difference between the data
found in the data warehouse and the profile data found in the class IV ODS.

0000000000000000

©0000000000000000

Fig 3.57 The data warehouse supports a class IV ODS.

The Data Warehouse and Design 145

Summary

The design of the data warehouse begins with the data model. The corporate
data model is used for the design of the operational environment, and a varia-
tion of the corporate data model is used for the data warehouse. The data ware-
house is constructed in an iterative fashion. Requirements for the data
warehouse cannot be known a priori. The construction of the data warehouse
is under a development life cycle completely different from that of classical
operational systems.

The primary concern of the data warehouse developer is managing volume. To
that end, granularity and partitioning of data are the two most important issues
of database design. There are, however, many other physical design issues,
most of which center around the efficiency of access to data.

The data warehouse is fed data as it passes from the legacy operational envi-
ronment. Data goes through a complex process of conversion, reformatting,
and integration as it passes from the legacy operational environment into the
data warehouse environment. Often, as data passes into the data warehouse
environment there is a shift of time. In some cases, the operational data has no
timestamping, and in other cases, the level of granularity of the operational
data needs to be adjusted.

The data model exists at three levels—high level, midlevel, and low level. The
data model is the key to being able to build the data warehouse in iterations.
The entities found in the high-level model relate to the major subject areas of
the corporation. The low-level model relates to the physical database design
of the data warehouse.

At the lowest level of database design, slight denormalization can occur when
the entire organization looks at the data in the same way. Some techniques for
slight denormalization of data include creating arrays of data, creating redun-
dant data judiciously, and making creative indexes.

The basic structure of the data warehouse record is one that contains a time-
stamp, a key, direct data, and secondary data. All data warehouse database
designs—in one form or the other—follow this simple pattern.

Reference tables need to be placed in the data warehouse and managed on a
time-variant basis just like any other data. There are many approaches to the
inclusion and design of reference data in the data warehouse.

Data is loaded into the data warehouse under what can be termed a “wrinkle of
time.” This means that as soon as an activity occurs in the operational environ-
ment, that data is not immediately rushed to the data warehouse. Instead, data

146

that has been newly updated in the operational environment is allowed to stand
in the operational environment for up to 24 hours before being moved to the
data warehouse.

The transformation that occurs as data moves from the operational environ-
ment to the data warehouse environment is complex. There is a change in
DBMS, a change in operating systems, a change in hardware architecture, a
change in semantics, a change in coding, and so forth. Many, many considera-
tions are involved in the movement of data from the operational environment to
the data warehouse environment.

The creation of a data warehouse record is triggered by an activity or an event
that has occurred in the operational environment. In some cases, an event—
such as a sale—has occurred. In other cases, the regular passage of time has
occurred, such as the end of the month or the end of the week.

A profile record is a composite record made up of many different historical
activities. The profile record is a composite representation of data.

The star join is a database design technique that is sometimes mistakenly
applied to the data warehouse environment. The star join multidimensional
approach is an approach where database design is based on the occurrences of
data within a subject area and how that data will be accessed. Star join design
applies to the world of data marts, not the world of data warehouses. It is a mis-
take to build a data warehouse with a star join because the data warehouse will
end up being optimal for one set of users at the expense of everyone else.

Granularity in the
Data Warehouse

T

CHAPTER

he single most important design issue facing the data warehouse developer is
determining the granularity. When the granularity is properly set, the remaining
aspects of design and implementation flow smoothly; when it is not properly
set, every other aspect is awkward.

Granularity is also important to the warehouse architect because it affects all of
the environments that depend on the warehouse for data. Granularity affects
how efficiently data can be shipped to the different environments determines
the types of analysis that can be done.

The primary issue of granularity is that of getting it at the right level. The level
of granularity needs to be neither too high or too low.

The trade-off in choosing the right levels of granularity—as discussed in Chap-
ter 2—centers around managing the volume of data and storing data at too
high a level of granularity, to the point that detailed data is so voluminous that
it is unusable. In addition, if there is to be a truly large amount of data, consid-
eration must be given to putting the inactive portion of the data into overflow
storage.

148 CHAPTER 4

Raw Estimates

The starting point for determining the appropriate level of granularity is to do a
raw estimate of the number of rows of data and the DASD (direct access stor-
age device) that will be in the data warehouse. Admittedly, in the best of cir-
cumstances, only an estimate can be made. But all that is required at the
inception of building the warehouse is an order-of-magnitude estimate.

The raw estimate of the number of rows of data that will reside in the data
warehouse tells the architect a great deal. If there are only 10,000 rows, almost
any level of granularity will do. If there are 10 million rows, a low level of gran-
ularity is needed. If there are 10 billion rows, not only is a low level of granular-
ity needed, but a major portion of the data must go into overflow storage.

Figure 4.1 shows an algorithmic path to calculate the space occupied by a data
warehouse. The first step is to identify all the tables to be built. As a rule of
thumb, there will be one or two really large tables and many smaller supporting
tables. Next, estimate the size of the row in each table. It is likely that the exact
size will not be known. A lower-bound estimate and an upper-bound estimate
are sufficient.

Next, on the one-year horizon, estimate the maximum and minimum number of
rows in the table. This estimate is the one that is the most problematic for the
designer. If the table is for customers, use today’s estimate, factoring in busi-
ness conditions and the corporate business plan. If there is no existing business

Estimating rows/space for the warehouse environment
1. For each known table:
How big is a row (in bytes)
—biggest estimate
—smallest estimate
For the 1-year horizon
What is the maximum number of rows possible?
What are the minimum number of rows possible?
For the 5-year horizon
What is the maximum number of rows possible?
What is the minimum number of rows possible?
For each key of the table
What is the size of the key (in bytes)
Total maximum 1-year space = biggest row x 1-year max rows
Total minimum 1-year space = smallest row x 1-year min rows
plus index space

2. Repeat (1) for all known tables.

Figure 4.1 Space/row calculations.

Granularity in the Data Warehouse 149

today, estimate the total market multiplied by the expected market share. If the
market share is unpredictable, use an estimate of what a competitor has
achieved. In short, start with a reasonable estimate of customers gathered from
one or more sources.

If the warehouse is to contain information about activity, go from the estimated
number of customers to the estimated activity per unit of time. Again, the same
logic is used: looking at current business profiles, a competitor’s profile, eco-
nomic projections, and so forth.

Once the estimate of number of units of data in the data warehouse is made
(using a high and a low projection), repeat the process, but this time for the
five-year horizon.

After the raw data projections are made, the index data space projections are
calculated. For each table—for each key in the table or element of data that will
be searched directly—identify the length of the key or element of data and
determine whether the key will exist for each entry in the primary table.

Now the high and low numbers for the occurrences of rows in the tables are
multiplied, respectively, by the maximum and minimum lengths of data. In addi-
tion, the number of index entries is multiplied by the length of the key and
added to the total amount of data in order to determine the volume of data that
will be required.

A word of caution: Estimates projecting the size of the data warehouse almost
always are low. Furthermore, the growth rate of the warehouse is usually faster
than the projection.

Input to the Planning Process

The estimate of rows and DASD then serves as input to the planning process, as
shown by Figure 4.2. When the estimates are made, accuracy is actually impor-
tant (or even desirable) only to the order of magnitude. A fine degree of accu-
racy here is a waste of time.

Data in Overflow?

Once the raw estimate as to the size of the data warehouse is made, the next
step is to compare the total number of rows in the warehouse environment to
the charts shown in Figure 4.3. Depending on how many total rows will be in
the warehouse environment, different approaches to design, development, and
storage are necessary. For the one-year horizon, if the number of row total

150 CHAPTER 4

How much DASD is needed?
How much lead time for
ordering can be expected?

space estimates, row estimates

Q

Are dual levels of granularity
needed?

Figure 4.2 Using the output of the space estimates.

1-year horizon 5-year horizon
100,000,000 data in overflow 1,000,000,000 data in overflow
and on disk, majority and on disk, majority
in overflow, very careful in overflow, very careful
consideration of granularity consideration of granularity
10,000,000 possibly some data 100,000,000 possibly some data
in overflow, most data in overflow, most data
on disk, some consideration on disk, some consideration
of granularity of granularity
1,000,000 data on disk, almost any 10,000,000 data on disk, almost any
database design database design
100,000 any database design, all 1,000,000 any database design, all
data on disk data on disk

Figure 4.3 Compare the total number of rows in the warehouse environment to the
charts.

fewer than 100,000, practically any design and implementation will work, and
no data will have to go to overflow. If there will be 1 million total rows or fewer,
design must be done carefully, and it is unlikely that any data will have to go
into overflow. If the total number of row will exceed 10 million, design must be

Granularity in the Data Warehouse 151

done carefully, and it is likely that at least some data will go to overflow. And if
the total number of rows in the data warehouse environment is to exceed 100
million rows, surely a large amount of data will go to overflow storage, and a
very careful design and implementation of the data warehouse is required.

On the five-year horizon, the totals shift by about an order of magnitude. The
theory is that after five years these factors will be in place:

m There will be more expertise available in managing the data warehouse
volumes of data.

m Hardware costs will have dropped to some extent.
m More powerful software tools will be available.

m The end user will be more sophisticated.

All of these factors point to a different volume of data that can be managed over
a long period of time. Unfortunately, it is almost impossible to accurately fore-
cast the volume of data into a five-year horizon. Therefore, this estimate is used
as merely a raw guess.

An interesting point is that the total number of bytes used in the warehouse has
relatively little to do with the design and granularity of the data warehouse. In
other words, it does not particularly matter whether the record being considered
is 25 bytes long or 250 bytes long. As long as the length of the record is of rea-
sonable size, then the chart shown in Figure 4.3 still applies. Of course, if the
record being considered is 250,000 bytes long, then the length of the record
makes a difference. Not many records of that size are found in the data ware-
house environment, however. The reason for the indifference to record size has
as much to do with the indexing of data as anything else. The same number of
index entries is required regardless of the size of the record being indexed. Only
under exceptional circumstances does the actual size of the record being indexed
play a role in determining whether the data warehouse should go into overflow.

Overflow Storage

Data in the data warehouse environment grows at a rate never before seen by
IT professionals. The combination of historical data and detailed data produces
a growth rate that is phenomenal. The terms terabyte and petabyte were used
only in theory prior to data warehousing.

As data grows large a natural subdivision of data occurs between actively used
data and inactively used data. Inactive data is sometimes called dormant data.
At some point in the life of the data warehouse, the vast majority of the data in
the warehouse becomes stale and unused. At this point it makes sense to start
separating the data onto different storage media.

152

CHAPTER 4

Most professionals have never built a system on anything but disk storage. But
as the data warehouse grows large, it simply makes economic and technologi-
cal sense to place the data on multiple storage media. The actively used portion
of the data warehouse remains on disk storage, while the inactive portion of the
data in the data warehouse is placed on alternative storage or near-line storage.

Data that is placed on alternative or near-line storage is stored much less
expensively than data that resides on disk storage. And just because data is
placed on alternative or near-line storage does not mean that the data is inac-
cessible. Data placed on alternate or near-line storage is just as accessible as
data placed on disk storage. By placing inactive data on alternate or near-line
storage, the architect removes impediments to performance from the high-
performance active data. In fact, moving data to near-line storage greatly accel-
erates the performance of the entire environment.

To make data accessible throughout the system and to place the proper data in
the proper part of storage, software support of the alternate storage/near-line
environment is needed. Figure 4.4 shows some of the more important compo-
nents of the support infrastructure needed for the alternate storage/near-line
storage environment.

Figure 4.4 shows that a data monitor is needed to determine the usage of data.
The data monitor tells where to place data. The movement between disk stor-
age and near-line storage is controlled by means of software called a cross-
media storage manager. The data in alternate storage/near-line storage can be
accessed directly by means of software that has the intelligence to know where
data is located in near-line storage. These three software components are the
minimum required for alternate storage/near-line storage to be used effectively.

In many regards alternate storage/near-line storage acts as overflow storage for
the data warehouse. Logically, the data warehouse extends over both disk stor-
age and alternate storage/near-line storage in order to form a single image of
data. Of course, physically the data may be placed on any number of volumes of
data.

An important component of the data warehouse is overflow storage, where
infrequently used data is held. Overflow storage has an important effect on
granularity. Without this type of storage, the designer is forced to adjust the
level of granularity to the capacity and budget for disk technology. With over-
flow storage the designer is free to create as low a level of granularity as
desired.

Overflow storage can be on any number of storage media. Some of the popular
media are photo optical storage, magnetic tape (sometimes called “near-line
storage”), and cheap disk. The magnetic tape storage medium is not the same
as the old-style mag tapes with vacuum units tended by an operator. Instead,

Granularity in the Data Warehouse 153

monitor data warehouse use

0000000000000000
0000000000000000
0000000000000880

0000000000000000

©0000000000000000 V\

cross-media storage management

-line/al i
i | — S Y
—" ee

Qe

Figure 4.4 The support software needed to make storage overflow possible.

the modern rendition is a robotically controlled silo of storage where the
human hand never touches the storage unit.

The alternate forms of storage are cheap, reliable, and capable of storing huge
amounts of data, much more so than is feasible for storage on high-performance
disk devices—the alternate of storage. In doing so, the alternate forms of stor-
age as overflow for the data warehouse allow. In some cases, a query facility
that can operate independently of the storage device is desirable. In this case
when a user makes a query there is no prior knowledge of where the data
resides. The query is issued, and the system then finds the data regardless of
where it is.

While it is convenient for the end user to merely “go get the data,” there is a per-
formance implication. If the end user frequently accesses data that is in alter-
nate storage, the query will not run quickly, and many machine resources will
be consumed in the servicing of the request. Therefore, the data architect is
best advised to make sure that the data that resides in alternate storage is
accessed infrequently.

There are several ways to ensure infrequently accessed data resides in alternate
storage. A simple way is to place data in alternate storage when it reaches a
certain age—say, 24 months. Another way is to place certain types of data in

154

CHAPTER 4

alternate storage and other types in disk storage. Monthly summary of cus-
tomer records may be placed in disk storage, while details that support the
monthly summary are placed in alternate storage.

In other cases of query processing, separating the disk-based queries from the
alternate-storage-based queries is desirable. Here, one type of query goes
against disk-based storage and another type goes against alternate storage. In
this case, there is no need to worry about the performance implications of a
query having to fetch alternate-storage-based data.

This sort of query separation can be advantageous—particularly with regard to
protecting systems resources. Usually the types of queries that operate against
alternate storage end up accessing huge amounts of data. Because these long-
running activities are performed in a completely separate environment, the
data administrator never has to worry about query performance in the disk-
based environment.

For the overflow storage environment to operate properly, several types of
software become mandatory. Figure 4.5 shows these types and where they are
positioned.

v —
s

activity
monitor

,/(,/(,/(
s, .

/ e cross-media

/’/ v storage manager

Figure 4.5 For overflow storage to function properly, at least two types of software are
needed—a cross-media storage manager and an activity monitor.

Granularity in the Data Warehouse 155

Figure 4.5 shows that two pieces of software are needed for the overflow envi-
ronment to operate properly—a cross-media storage manager and an activity
monitor. The cross-media storage manager manages the traffic of data going to
and from the disk storage environment to the alternate storage environment.
Data moves from the disk to alternate storage when it ages or when its proba-
bility of access drops. Data from the alternate storage environment can be
moved to disk storage when there is a request for the data or when it is detected
that there will be multiple future requests for the data. By moving the data to
and from disk storage to alternate storage, the data administrator is able to get
maximum performance from the system.

The second piece required, the activity monitor, determines what data is and is
not being accessed. The activity monitor supplies the intelligence to determine
where data is to be placed—on disk storage or on alternate storage.

What the Levels of Granularity Will Be

Once the simple analysis is done (and, in truth, many companies discover that
they need to put at least some data into overflow storage), the next step is to
determine the level of granularity for data residing on disk storage. This step
requires common sense and a certain amount of intuition. Creating a disk-based
data warehouse at a very low level of detail doesn’t make sense because too
many resources are required to process the data. On the other hand, creating a
disk-based data warehouse with a level of granularity that is too high means
that much analysis must be done against data that resides in overflow storage.
So the first cut at determining the proper level of granularity is to make an edu-
cated guess.

Such a guess is only the starting point, however. To refine the guess, a certain
amount of iterative analysis is needed, as shown in Figure 4.6. The only real way
to determine the proper level of granularity for the lightly summarized data is to
put the data in front of the end user. Only after the end user has actually seen
the data can a definitive answer be given. Figure 4.6 shows the iterative loop
that must transpire.

The second consideration in determining the granularity level is to anticipate
the needs of the different architectural entities that will be fed from the data
warehouse. In some cases, this determination can be done scientifically. But, in
truth, this anticipation is really an educated guess. As a rule, if the level of gran-
ularity in the data warehouse is small enough, the design of the data warehouse
will suit all architectural entities. Data that is too fine can always be summa-
rized, whereas data that is not fine enough cannot be easily broken down.
Therefore, the data in the data warehouse needs to be at the lowest common
denominator.

156 CHAPTER 4

developer

designs, ,/—»Ej E
— | populates \ % reports/

data analysis

warehouse
DSS (
analysts

Rule of Thumb:

If 50% of the first iteration of design is correct, the design effort has been a success.

building very small subsets quickly and carefully listening to feedback
prototyping

looking at what other people have done

working with an experienced user

looking at what the organization has now

JAD sessions with simulated output

Figure 4.6 The attitude of the end user: "Now that | see what can be done, | can tell

III

you what would really be useful!

Some Feedback Loop Techniques

Following are techniques to make the feedback loop harmonious:

m Build the first parts of the data warehouse in very small, very fast steps,

and carefully listen to the end users’ comments at the end of each step of
development. Be prepared to make adjustments quickly.

If available, use prototyping and allow the feedback loop to function using
observations gleaned from the prototype.

Look at how other people have built their levels of granularity and learn
from their experience.

Go through the feedback process with an experienced user who is aware
of the process occurring. Under no circumstances should you keep your
users in the dark as to the dynamics of the feedback loop.

Look at whatever the organization has now that appears to be working,
and use those functional requirements as a guideline.

Granularity in the Data Warehouse 157

m Execute joint application design (JAD) sessions and simulate the output in
order to achieve the desired feedback.

Granularity of data can be raised in many ways, such as the following:
m Summarize data from the source as it goes into the target.

Average or otherwise calculate data as it goes into the target.

Push highest/lowest set values into the target.

-
-
m Push only data that is obviously needed into the target.

m Use conditional logic to select only a subset of records to go into the
target.

The ways that data may be summarized or aggregated are limitless.

When building a data warehouse, keep one important point in mind. In classical
requirements systems development, it is unwise to proceed until the vast major-
ity of the requirements are identified. But in building the data warehouse, it is
unwise not to proceed if at least half of the requirements for the data ware-
house are identified. In other words, if in building the data warehouse the devel-
oper waits until many requirements are identified, the warehouse will never be
built. It is vital that the feedback loop with the DSS analyst be initiated as soon
as possible.

As arule, when transactions are created in business they are created from lots
of different types of data. An order contains part information, shipping infor-
mation, pricing, product specification information, and the like. A banking
transaction contains customer information, transaction amounts, account
information, banking domicile information, and so forth. When normal busi-
ness transactions are being prepared for placement in the data warehouse, their
level of granularity is too high, and they must be broken down into a lower
level. The normal circumstance then is for data to be broken down. There are at
least two other circumstances in which data is collected at too low a level of
granularity for the data warehouse, however:

m Manufacturing process control. Analog data is created as a by-product of
the manufacturing process. The analog data is at such a deep level of gran-
ularity that it is not useful in the data warehouse. It needs to be edited and
aggregated so that its level of granularity is raised.

m (lickstream data generated in the Web environment. Web logs collect
clickstream data at a granularity that it is much too fine to be placed in the
data warehouse. Clickstream data must be edited, cleansed, resequenced,
summarized, and so forth before it can be placed in the warehouse.

These are a few notable exceptions to the rule that business-generated data is
at too high a level of granularity.

158 CHAPTER 4

Levels of Granularity—Banking Environment

Consider the simple data structures shown in Figure 4.7 for a banking/financial
environment.

To the left—at the operational level—is operational data, where the details of
banking transactions are found. Sixty days’ worth of activity are stored in the
operational online environment.

In the lightly summarized level of processing—shown to the right of the opera-
tional data—are up to 10 years’ history of activities. The activities for an
account for a given month are stored in the lightly summarized portion of the
data warehouse. While there are many records here, they are much more com-
pact than the source records. Much less DASD and many fewer rows are found
in the lightly summarized level of data.

Of course, there is the archival level of data (i.e., the overflow level of data), in
which every detailed record is stored. The archival level of data is stored on a
medium suited to bulk management of data. Note that not all fields of data are
transported to the archival level. Only those fields needed for legal reasons,
informational reasons, and so forth are stored. The data that has no further use,
even in an archival mode, is purged from the system as data is passed to the
archival level.

The overflow environment can be held in a single medium, such as magnetic
tape, which is cheap for storage and expensive for access. It is entirely possible
to store a small part of the archival level of data online, when there is a proba-
bility that the data might be needed. For example, a bank might store the most
recent 30 days of activities online. The last 30 days is archival data, but it is still
online. At the end of the 30-day period, the data is sent to magnetic tape, and
space is made available for the next 30 days’ worth of archival data.

Now consider another example of data in an architected environment in the
banking/financial environment. Figure 4.8 shows customer records spread
across the environment. In the operational environment is shown current-value
data whose content is accurate as of the moment of usage. The data that exists
at the light level of summarization is the same data (in terms of definition of
data) but is taken as a snapshot once a month.

Where the customer data is kept over a long span of time—for the past 10 years-
a continuous file is created from the monthly files. In such a fashion the history
of a customer can be tracked over a lengthy period of time.

Now let’s move to another industry—manufacturing. In the architected
environment shown in Figure 4.9, at the operational level is the record of

Granularity in the Data Warehouse 159

dual levels of granularity in the banking environment

operational
60 days worth monthly account register—
of activity up to 10 years
account account
activity date month
amount number of transactions
teller withdrawals
location deposits
to whom beg balance
identification end balance
account balance account high
instrument number account low
.................. average account balance

account

activity date
amount
to whom
identification
account balance
instrument number

Figure 4.7 A simple example of dual levels of granularity in the banking environment.

CHAPTER 4

dual levels of granularity in the banking environment

current
customer data

customer ID
name
address
phone
employer
credit rating
monthly income
dependents
own home?
occupation

last month’s
customer file

customer ID
name
address
phone
employer
credit rating
monthly income
dependents
own home?
occupation

continuous customer
record—Ilast ten years

customer ID

from date

to date
name
address
credit rating
monthly income
own home?
occupation

Figure 4.8 Another form of dual levels of granularity in the banking environment.

Granularity in the Data Warehouse 161

dual levels of granularity in the manufacturing environment

daily production
30 days stored

part no
date
gty
by assembly
to assembly
work order manifest
dropout rate
on time?
storage location
responsible foreman

cumulative production
90 days stored

part no

date
total gty completed
total gty used
total dropout
lots complete on time
lots complete late

assembly record 1 year’s history

assembly ID

part no

date
total gty
number lots
on time
late

true archival level

part no
date
aty
by assembly
to assembly
work order manifest
dropout rate
on time-?
responsible foreman

Figure 4.9 Some of the different levels of granularity in a manufacturing environment.

162

CHAPTER 4

manufacture upon the completion of an assembly for a given lot of parts.
Throughout the day many records aggregate as the assembly process runs.

The light level of summarization contains two tables—one for all the activities
for a part summarized by day, another by assembly activity by part. The parts’
cumulative production table contains data for up to 90 days. The assembly
record contains a limited amount of data on the production activity summa-
rized by date.

The archival/overflow environment contains a detailed record of each manu-
facture activity. As in the case of a bank, only those fields that will be needed
later are stored. (Actually, those fields that have a reasonable probability of
being needed later are stored.)

Another example of data warehouse granularity in the manufacturing environ-
ment is shown in Figure 4.10, where an active-order file is in the operational
environment. All orders that require activity are stored there. In the data ware-
house is stored up to 10 years’ worth of order history. The order history is keyed
on the primary key and several secondary keys. Only the data that will be
needed for future analysis is stored in the warehouse. The volume of orders

levels of granularity in the manufacturing environment

active orders up 10 years’ order

to 2 years histor .

y y indexed
separately

order no
customer ///
part no order no

amount date of order

date of order customer

delivery date > part no

ship to amount

expedite cost

cost late delivery?

contact
shipping unit

Figure 4.10 There are so few order records that there is no need for a dual level of
granularity.

Granularity in the Data Warehouse 163

was so small that going to an overflow level was not necessary. Of course,
should orders suddenly increase, it may be necessary to go to a lower level of
granularity and into overflow.

Another adaptation of a shift in granularity is seen in the data in the architected
environment of an insurance company, shown in Figure 4.11. Premium pay-
ment information is collected in an active file. Then, after a period of time, the
information is passed to the data warehouse. Because only a relatively small
amount of data exists, overflow data is not needed. However, because of the
regularity of premium payments, the payments are stored as part of an array in
the warehouse.

As another example of architecture in the insurance environment, consider the
insurance claims information shown in Figure 4.12. In the current claims system
(the operational part of the environment), much detailed information is stored
about claims. When a claim is settled (or when it is determined that a claim is not
going to be settled), or when enough time passes that the claim is still pending,

dual levels of granularity in the insurance environment

premium payments premium history
(active) 10 years
policy no policy no
premium date year
late date premium-1
amount date due
adjustments date paid
amount
B E—

late charge
premium-2
date due
date paid
amount

late charge

Figure 4.11 Because of the low volume of premiums, there is no need for dual levels of
granularity, and because of the regularity of premium billing, there is the
opportunity to create an array of data.

164

CHAPTER 4

dual levels of granularity in the insurance environment

current claims

claim no

policy no
date of claim
amount
settlement offered
type of claim
no fault
settlement accepted

reason not

accepted
arbitration?
damage estimate
loss estimate
uninsured loss
coinsurance?

agent/claims by month
10 years

agent

month
total claims
total amount
settlements

agent/claims by month
10 years

type of claim
month
total claims
total amount
single largest
settlement

true archival,
unlimited time

claim no

policy no
date of claim
amount
settlement offered
type of claim
no fault
settlement accepted
reason not accepted
arbitration?
damage estimate
loss estimate
uninsured loss
coinsurance?

Figure 4.12 Claims information is summarized on other than the primary key in the
lightly summarized part of the warehouse. Claims information must be
kept indefinitely in the true archival portion of the architecture.

Granularity in the Data Warehouse 165

the claim information passes over to the data warehouse. As it does so, the claim
information is summarized in several ways—Dby agent by month, by type of claim
by month, and so on. At a lower level of detail, the claim is held in overflow stor-
age for an unlimited amount of time. As in the other cases in which data passes
to overflow, only data that might be needed in the future is kept (which is most
of the information found in the operational environment).

Summary

Choosing the proper levels of granularity for the architected environment is
vital to success. The normal way the levels of granularity are chosen is to use
common sense, create a small part of the warehouse, and let the user access the
data. Then listen very carefully to the user, take the feedback he or she gives,
and adjust the levels of granularity appropriately.

The worst stance that can be taken is to design all the levels of granularity a pri-
ori, then build the data warehouse. Even in the best of circumstances, if 50 per-
cent of the design is done correctly, the design is a good one. The nature of the
data warehouse environment is such that the DSS analyst cannot envision what
is really needed until he or she actually sees the reports.

The process of granularity design begins with a raw estimate of how large the
warehouse will be on the one-year and the five-year horizon. Once the raw esti-
mate is made, then the estimate tells the designer just how fine the granularity
should be. In addition, the estimate tells whether overflow storage should be
considered.

There is an important feedback loop for the data warehouse environment.
Upon building the data warehouse’s first iteration, the data architect listens
very carefully to the feedback from the end user. Adjustments are made based
on the user’s input.

Another important consideration is the levels of granularity needed by the dif-
ferent architectural components that will be fed from the data warehouse.
When data goes into overflow—away from disk storage to a form of alternate
storage—the granularity can be as low as desired. When overflow storage is not
used, the designer will be constrained in the selection of the level of granularity
when there is a significant amount of data.

For overflow storage to operate properly, two pieces of software are neces-
sary—a cross-media storage manager that manages the traffic to and from the
disk environment to the alternate storage environment and an activity monitor.
The activity monitor is needed to determine what data should be in overflow
and what data should be on disk.

CHAPTER

The Data Warehou
and Technology

tures than its predecessors. Online updating with the data warehouse is not
needed, locking needs are minimal, only a very basic teleprocessing interface is
required, and so forth. Nevertheless, there are a fair number of technological
requirements for the data warehouse. This chapter outlines some of these.

In many ways, the data warehouse requires a simpler set of technological fea-

Managing Large Amounts of Data

Prior to data warehousing the terms terabytes and petabytes were unknown;
data capacity was measured in megabytes and gigabytes. After data warehous-
ing the whole perception changed. Suddenly what was large one day was tri-
fling the next. The explosion of data volume came about because the data
warehouse required that both detail and history be mixed in the same environ-
ment. The issue of volumes of data is so important that it pervades all other
aspects of data warehousing. With this in mind, the first and most important
technological requirement for the data warehouse is the ability to manage large
amounts of data, as shown in Figure 5.1. There are many approaches, and in a
large warehouse environment, more than one approach will be used.

Large amounts of data need to be managed in many ways—through flexibility
of addressability of data stored inside the processor and stored inside disk

167

First technological requirement— % Ej

the ability to manage volumes of
data Ej

Second technological requirement— %
to be able to manage multiple %

media %

. . . index
Third technological requirement—
to be able to index and montor

data freely and easily

Fourth technological requirement—

to interface—both receiving data (‘s 47
from and passing data to a wide 7 Y‘

variety of technologies
Figure 5.1 Some basic requirements for technology supporting a data warehouse.

storage, through indexing, through extensions of data, through the efficient
management of overflow, and so forth. No matter how the data is managed,
however, two fundamental requirements are evident—the ability to manage
large amounts at all and the ability to manage it well. Some approaches can be
used to manage large amounts of data but do so in a clumsy manner. Other
approaches can manage large amounts and do so in an efficient, elegant man-

The Data Warehouse and Technology 169

ner. To be effective, the technology used must satisfy the requirements for both
volume and efficiency.

In the ideal case, the data warehouse developer builds a data warehouse under
the assumption that the technology that houses the data warehouse can handle
the volumes required. When the designer has to go to extraordinary lengths in
design and implementation to map the technology to the data warehouse, then
there is a problem with the underlying technology. When technology is an issue,
it is normal to engage more than one technology. The ability to participate in
moving dormant data to overflow storage is perhaps the most strategic capa-
bility that a technology can have.

Of course, beyond the basic issue of technology and its efficiency is the cost of
storage and processing.

Managing Multiple Media

In conjunction with managing large amounts of data efficiently and cost-
effectively, the technology underlying the data warehouse must handle multiple
storage media. It is insufficient to manage a mature data warehouse on Direct
Access Storage Device (DASD) alone. Following is a hierarchy of storage of
data in terms of speed of access and cost of storage:

Main memory Very fast Very expensive
Expanded memory Very fast Expensive
Cache Very fast Expensive
DASD Fast Moderate
Magnetic tape Not fast Not expensive
Optical disk Not slow Not expensive
Fiche Slow Cheap

The volume of data in the data warehouse and the differences in the probability
of access dictates that a fully populated data warehouse reside on more than
one level of storage.

Index/Monitor Data

The very essence of the data warehouse is the flexible and unpredictable
access of data. This boils down to the ability to access the data quickly and eas-
ily. If data in the warehouse cannot be easily and efficiently indexed, the data
warehouse will not be a success. Of course, the designer uses many practices to

170 | K

make data as flexible as possible, such as spreading data across different stor-
age media and partitioning data. But the technology that houses the data must
be able to support easy indexing as well. Some of the indexing techniques that
often make sense are the support of secondary indexes, the support of sparse
indexes, the support of dynamic, temporary indexes, and so forth. Further-
more, the cost of creating the index and using the index cannot be significant.

In the same vein, the data must be monitored at will. The cost of monitoring
data cannot be so high and the complexity of monitoring data so great as to
inhibit a monitoring program from being run whenever necessary. Unlike the
monitoring of transaction processing, where the transactions themselves are
monitored, data warehouse activity monitoring determines what data has and
has not been used.

Monitoring data warehouse data determines such factors as the following:

m [f a reorganization needs to be done

m If an index is poorly structured

m [f too much or not enough data is in overflow

m The statistical composition of the access of the data

m Available remaining space

If the technology that houses the data warehouse does not support easy and
efficient monitoring of data in the warehouse, it is not appropriate.

Interfaces to Many Technologies

Another extremely important component of the data warehouse is the ability
both to receive data from and to pass data to a wide variety of technologies.
Data passes into the data warehouse from the operational environment and the
ODS, and from the data warehouse into data marts, DSS applications, explo-
ration and data mining warehouses, and alternate storage. This passage must
be smooth and easy. The technology supporting the data warehouse is practi-
cally worthless if there are major constraints for data passing to and from the
data warehouse.

In addition to being efficient and easy to use, the interface to and from the data
warehouse must be able to operate in a batch mode. Operating in an online
mode is interesting but not terribly useful. Usually a period of dormancy exists
from the moment that the data arrives in the operational environment until the
data is ready to be passed to the data warehouse. Because of this latency, online
passage of data into the data warehouse is almost nonexistent (as opposed to
online movement of data into a class I ODS).

The Data Warehouse and Technology 171

The interface to different technologies requires several considerations:

m Does the data pass from one DBMS to another easily?
m Does it pass from one operating system to another easily?
m Does it change its basic format in passage (EBCDIC, ASCII, etc.)?

Programmer/Designer Control
of Data Placement

Because of efficiency of access and update, the programmer/designer must
have specific control over the placement of data at the physical block/page
level, as shown in Figure 5.2.

The technology that houses the data in the data warehouse can place the data
where it thinks is appropriate, as long as the technology can be explicitly over-
ridden when needed. Technology that insists on the physical placement of data
with no overrides from the programmer is a serious mistake.

The programmer/designer often can arrange for the physical placement of data
to coincide with its usage. In doing so, many economies of resource utilization
can be gained in the access of data.

Parallel Storage/Management of Data

One of the most powerful features of data warehouse data management is par-
allel storage/management. When data is stored and managed in a parallel fash-
ion, the gains in performance can be dramatic. As a rule, the performance boost
is inversely proportional to the number of physical devices over which the data
is scattered, assuming there is an even probability of access for the data.

The entire issue of parallel storage/management of data is too complex and
important to be discussed at length here, but it should be mentioned.

Meta Data Management

As mentioned in Chapter 3, for a variety of reasons, meta data becomes even
more important in the data warehouse than in the classical operational envi-
ronment. Meta data is vital because of the fundamental difference in the devel-
opment life cycle that is associated with the data warehouse. The data
warehouse operates under a heuristic, iterative development life cycle. To be
effective, the user of the data warehouse must have access to meta data that is
accurate and up-to-date. Without a good source of meta data to operate from,

172

designer

Fifth technological requirement—
to allow the designer/developer

to physically place the data—at | e o e e e o | o | e
the block/page level—in an

optimal fashion Emj

Sixth technological requirement—
to manage data in parallel

meta data

Seventh technological requirement—
to have solid meta data control

Eighth technological requirement—
to have a rich language interface language
to the data warehouse

Figure 5.2 More technological requirements for the data warehouse.

the job of the DSS analyst is much more difficult. Typically, the technical meta
data that describes the data warehouse contains the following:

m Data warehouse table structures
m Data warehouse table attribution

m Data warehouse source data (the system of record)

The Data Warehouse and Technology 173

Mapping from the system of record to the data warehouse
Data model specification

Extract logging

Common routines for access of data

Definitions/descriptions of data

Relationships of one unit of data to another

Several types of meta data need to be managed in the data warehouse: distrib-
uted meta data, central meta data, technical meta data, and business meta data.
Each of these categories of meta data has its own considerations.

Language Interface

The data warehouse must have a rich language specification. The languages
used by the programmer and the DSS end user to access data inside the data
warehouse should be easy to use and robust. Without a robust language, enter-
ing and accessing data in the warehouse become difficult. In addition, the lan-
guage used to access data needs to operate efficiently.

Typically, the language interface to the data warehouse should do the following:

m Be able to access data a set at a time
m Be able to access data a record at a time

m Specifically ensure that one or more indexes will be used in the satisfac-
tion of a query

m Have an SQL interface

m Be able to insert, delete, or update data

There are, in fact, many different kinds of languages depending on the process-
ing being performed. These include languages for statistical analysis of data,
where data mining and exploration are done; languages for the simple access of
data; languages that handle prefabricated queries; and languages that optimize
on the graphic nature of the interface. Each of these languages has its own
strengths and weaknesses.

Efficient Loading of Data

An important technological capability of the data warehouse is to load the data
warehouse efficiently, as shown in Figure 5.3. The need for an efficient load is
important everywhere, but even more so in a large warehouse.

174

Ninth technological requirement—
to be able to load the warehouse
efficiently

Tenth technological requirement— tj
to use indexes efficiently

Eleventh technological requirement—
to be able to store data in a

compact way [EE0000000|
|[O00O0000000|
1 o o o [o
1 o o o [o
1] o o o [o

Twelfth technological requirement—
to support compound keys

KXXXX
XXXX
D0.0.6:0:0.04
00,0000 040l
KXXX
KXXXKKKXX

XX

KXXXKKKK

Figure 5.3 Further technological requirements.

Data is loaded into a data warehouse in two fundamental ways: a record at a
time through a language interface or en masse with a utility. As a rule, loading
data by means of a utility is much faster. In addition, indexes must be efficiently
loaded at the same time the data is loaded. In some cases, the loading of the
indexes may be deferred in order to spread the workload evenly.

The Data Warehouse and Technology 175

As the burden of the volume of loading becomes an issue, the load is often par-
allelized. When this happens, the data being loaded is divided into one of sev-
eral job streams. Once the input data is divided, each job stream is executed
independently of the other job streams. In doing so, the elapsed time needed for
loading is reduced by the number of job streams (roughly speaking).

Another related approach to the efficient loading of very large amounts of
datais staging the data prior to loading. As a rule, large amounts of data are
gathered into a buffer area before being processed by extract/transfer/load
(ETL) software. The staged data is merged, perhaps edited, summarized, and so
forth, before it passes into the ETL layer. Staging of data is needed only where
the amount of data is large and the complexity of processing is high.

Efficient Index Utilization

Not only must the technology underlying the data warehouse be able to easily
support the creation and loading of new indexes, but those indexes must be
able to be accessed efficiently. Technology can support efficient index access in
several ways:

m Using bit maps

m Having multileveled indexes

m Storing all or parts of an index in main memory
-

Compacting the index entries when the order of the data being indexed
allows such compaction

m (reating selective indexes and range indexes

In addition to the efficient storage and scanning of the index, the subsequent
access of data at the primary storage level is important. Unfortunately, there are
not nearly as many options for optimizing the access of primary data as there
are for the access of index data.

Compaction of Data

The very essence of success in the data warehouse environment is the ability to
manage large amounts of data. Central to this goal is the ability to compact
data. Of course, when data is compacted it can be stored in a minimal amount
of space. In addition, when data can be stored in a small space, the access of the
data is very efficient. Compaction of data is especially relevant to the data
warehouse environment because data in the warehouse environment is seldom
updated once inserted in the warehouse. The stability of warehouse data

176 | K

minimizes the problems of space management that arise when tightly com-
pacted data is being updated.

Another advantage is that the programmer gets the most out of a given I/O
when data is stored compactly. Of course, there is always the corresponding
issue of decompaction of data on access. While it is true that decompaction
requires overhead, the overhead is measured in CPU resources, not I/O
resources. As a rule, in the data warehouse environment, I/O resources are
much more scarce than CPU resources, so decompaction of data is not a major
issue.

Compound Keys

A simple but important technological requirement of the data warehouse envi-
ronment is the ability to support compound keys. Compound keys occur every-
where in the data warehouse environment, primarily because of the time
variancy of data warehouse data and because key/foreign key relationships are
quite common in the atomic data that makes up the data warehouse.

Variable-Length Data

Another simple but vital technological requirement of the data warehouse envi-
ronment is the ability to manage variable-length data efficiently, as seen in Fig-
ure 5.4. Variable-length data can cause tremendous performance problems
when it is constantly being updated and changed. Where variable-length data is
stable, as in the case of a data warehouse, there is no inherent performance
problem.

In addition, because of the variety of data found in the data warehouse, variable-
length structuring of data must be supported.

Lock Management

A standard part of database technology is the lock manager, which ensures that
two or more people are not updating the same record at the same time. But
update is not done in the data warehouse; instead, data is stored in a series of
snapshot records. When a change occurs a new snapshot record is added,
rather than an update being done.

The Data Warehouse and Technology 177

Thirteenth technological requirement—
to manage variable-length data
efficiently

Fourteenth technological requirement—
to be able to turn on and off the

lock manager at will: to be able to
explicitly control the lock manager

at the programmer level

Fifteenth technological requirement—
to be able to do index-only
processing

Sixteenth technological requirement—
to be able to restore data from a
bulk medium quickly and completely

lock manager

Figure 5.4 Still more technological requirements for the data warehouse.

One of the effects of the lock manager is that it consumes a fair amount of
resources, even when data is not being updated. Merely turning the lock man-
ager on requires overhead. Therefore, to streamline the data warehouse envi-
ronment, being able to selectively turn the lock manager off and on is necessary.

178 | K

Index-Only Processing

A fairly standard database management system feature is the ability to do
index-only processing. On many occasions, it is possible to service a request by
simply looking in an index (or indexes)—without going to the primary source
of data. This is, of course, much more efficient. Not all DBMSs, though, are
intelligent enough to know that a request can be satisfied in the index.

Technology that is optimal for the data warehouse environment looks for data
in the indexes exclusively if such a request can be formulated and/or allow the
query user to specify that such an index query has been specified. The DBMS
technology must offer the DSS end user the option of specifying that if an index
query can be executed, the query be satisfied in that manner.

Fast Restore

A simple but important technological feature of the data warehouse environ-
ment is the ability to quickly restore a data warehouse table from non-DASD
storage. When a restore can be done from secondary storage, enormous savings
may be possible. Without the ability to restore data quickly from secondary
storage, the standard practice is to double the amount of DASD and use one-
half of the DASD as a recovery/restore repository.

The quick-restore capability must be able to restore both full databases and
partial databases. The size of the data found in the data warehouse mandates
that only partial databases be able to be recovered.

In addition, the DBMS needs to sense that an error has occurred in as auto-
mated a manner as possible. Leaving the detection of data corruption to the end
user is a very crude way to process. Another useful technology is the ability to
create diagnostic tools to determine exactly what data has been corrupted. The
diagnostic tool must operate within huge amounts of data.

Other Technological Features

The features discussed here are only the most important. Many others support
data warehousing, but they are too numerous to mention here.

It is noteworthy that many other features of DBMS technology found in the
classical transaction processing DBMS play only a small role (if they play a role
at all) in the support of the data warehouse environment. Some of those fea-
tures include the following:

The Data Warehouse and Technology 179

Transaction integrity

High-speed buffering

|

-

m Row/page-level locking
m Referential integrity

-

VIEWSs of data

Indeed, whenever a transaction-based DBMS is used in the data warehouse
environment, it is desirable to turn off such features, as they interfere with the
efficient processing of data inside the data warehouse.

DBMS Types and the Data Warehouse

With the advent of data warehousing and the recognition of DSS as an integral
part of the modern information systems infrastructure, a new class of DBMS
has arisen. This class can be called a data warehouse-specific database man-
agement system. The data warehouse-specific DBMS is optimized for data
warehousing and DSS processing.

Prior to data warehousing was transaction processing, and DBMSs supported
the needs of this processing type. Processing in the data warehouse, though, is
quite different. Data warehouse processing can be characterized as load-and-
access. Data is integrated, transformed, and loaded into the data warehouse
from the operational legacy environment and the ODS. Once in the data ware-
house, the integrated data is accessed and analyzed there. Update is not nor-
mally done in the data warehouse once the data is loaded. If corrections or
adjustments need to be made to the data warehouse, they are made at off hours,
when no analysis is occurring against the data warehouse data. In addition,
such changes are made by including a more current snapshot of data.

Another important difference between classical transaction processing data-
base environments and the data warehouse environment is that the data ware-
house environment tends to hold much more data, measured in terabytes and
petabytes, than classical transaction processing databases under a general-
purpose DBMSs. Data warehouses manage massive amounts of data because
they contain the following:

m Granular, atomic detail
m Historical information
m Summary as well as detailed data

In terms of basic data management capability, data warehouses are optimized
around a very different set of parameters than standard operational DBMSs.

The first and most important difference between a classical, general-purpose
DBMS and a data warehouse-specific DBMS is how updates are performed. A
classical, general-purpose DBMS must be able to accommodate record-level,
transaction-based updates as a normal part of operations. Because record-
level, transaction-based updates are a regular feature of the general-purpose
DBMS, the general-purpose DBMS must offer facilities for such items as the
following:

m Locking

= COMMITs

m Checkpoints

m Log tape processing
m Deadlock

m Backout

Not only do these features become a normal part of the DBMS, they consume a
tremendous amount of overhead. Interestingly, the overhead is consumed even
when it isn’t being used. In other words, at least some update and locking over-
head—depending on the DBMS—is required by a general-purpose DBMS even
when read-only processing is being executed. Depending on the general-
purpose DBMS, the overhead required by update can be minimized, but it can-
not be completely eliminated. For a data warehouse-specific DBMS, there is no
need for any of the overhead of update.

A second major difference between a general-purpose DBMS and a data ware-
house-specific DBMS regards basic data management. For a general-purpose
DBMS, data management at the block level includes space that is reserved for
future block expansion at the moment of update or insertion. Typically, this
space is referred to as freespace. For a general-purpose DBMS, freespace may
be as high as 50 percent. For a data warehouse-specific DBMS, freespace
always equals 0 percent because there is no need for expansion in the physical
block, once loaded; after all, update is not done in the data warehouse environ-
ment. Indeed, given the amount of data to be managed in a data warehouse, it
makes no sense to reserve vast amounts of space that may never be used.

Another relevant difference between the data warehouse and the general-
purpose environment that is reflected in the different types of DBMS is indexing.
A general-purpose DBMS environment is restricted to a finite number of
indexes. This restriction exists because as updates and insertions occur, the
indexes themselves require their own space and their own data management. In
a data warehouse environment where there is no update and there is a need to
optimize access of data, there is a need (and an opportunity) for many indexes.
Indeed, a much more robust and sophisticated indexing structure can be
employed for data warehousing than for operational, update-oriented databases.

The Data Warehouse and Technology 181

Beyond indexing, update, and basic data management at the physical block
level are some other very basic differences between the data management cap-
abilities and philosophies of general-purpose transaction processing DBMSs
and data warehouse-specific DBMSs. Perhaps the most basic difference is the
ability to physically organize data in an optimal fashion for different kinds of
access. A general-purpose DBMS typically physically organizes data for optimal
transaction access and manipulation. Organizing in this fashion allows many
different types of data to be gathered according to a common key and effi-
ciently accessed in one or two I/Os. Data that is optimal for informational
access usually has a very different physical profile. Data that is optimal for
informational access is organized so that many different occurrences of the
same type of data can be accessed efficiently in one or two physical I/Os.

Data can be physically optimized for transaction access or DSS access, but not
both at the same time. A general-purpose, transaction-based DBMS allows data
to be optimized for transaction access, and a data warehouse-specific DBMS
allows data to be physically optimized for DSS access and analysis.

Changing DBMS Technology

An interesting consideration of the information warehouse is changing the
DBMS technology after the warehouse has already been populated. Such a
change may be in order for several reasons:

m DBMS technologies may be available today that simply were not an option
when the data warehouse was first populated.

m The size of the warehouse has grown to the point that a new technological
approach is mandated.

m Use of the warehouse has escalated and changed to the point that the cur-
rent warehouse DBMS technology is not adequate.

m The basic DBMS decision must be revisited from time to time.

Should the decision be made to go to a new DBMS technology, what are the
considerations? A few of the more important ones follow:

m Will the new DBMS technology meet the foreseeable requirements?

m How will the conversion from the older DBMS technology to the newer
DBMS technology be done?

m How will the transformation programs be converted?

Of all of these considerations, the last is the most vexing. Trying to change the
transformation programs is a complex task in the best of circumstances.

182 |

The fact remains that once a DBMS has been implemented for a data ware-
house, change at a later point in time is a possibility. Such was never the case in
the world of transaction processing; once a DBMS had been implemented, that
DBMS stayed as long as the transactions were being run.

Multidimensional DBMS and
the Data Warehouse

One of the technologies often discussed in the context of the data warehouse is
multidimensional database management systems processing (sometimes called
OLAP processing). Multidimensional database management systems, or data
marts, provide an information system with the structure that allows an organi-
zation to have very flexible access to data, to slice and dice data any number of
ways, and to dynamically explore the relationship between summary and detail
data. Multidimensional DBMSs offer both flexibility and control to the end user,
and as such they fit well in a DSS environment. A very interesting and comple-
mentary relationship exists between multidimensional DBMSs and the data
warehouse, as shown in Figure 5.5.

The detailed data housed in a data warehouse provides a very robust and con-
venient source of data for the multidimensional DBMS. Data flows from the
data warehouse into the multidimensional DBMS on a regular basis as the mul-
tidimensional DBMS needs to be periodically refreshed. Because legacy appli-
cation data is integrated as it enters the data warehouse, the multidimensional

finance mktg acctg

iaht datamart
sum?nar)ilzed multidimensional
DBMS (OLAP)

current
detail

Figure 5.5 The classical structure of the data warehouse and how current detail data
and departmental data (or multidimensional DBMS, data mart) data fit
together.

The Data Warehouse and Technology 183

DBMS does not need to extract and integrate the data it operates on from the
operational environment. In addition, the data warehouse houses data at its
lowest level, providing “bedrock” data for the lowest level of analysis that any-
one using the multidimensional DBMS would ever want.

Though tempting to think that multidimensional DBMS technology should be
the database technology for the data warehouse, in all but the most unusual
cases, this is a mistake. The properties that make multidimensional DBMS tech-
nology optimal for what it does are not the properties of primary importance
for the data warehouse, and the properties that are the most important in the
data warehouse are not those found in multidimensional DBMS technology.

Consider the differences between the multidimensional DBMS and the data
warehouse:

m The data warehouse holds massive amounts of data; the multidimensional
DBMS holds at least an order of magnitude less data.

m The data warehouse is geared for a limited amount of flexible access; the
multidimensional DBMS is geared for very heavy and unpredictable access
and analysis of data.

m The data warehouse contains data with a very lengthy time horizon—from
5 to 10 years; the multidimensional DBMS holds a much shorter time hori-
zon of data.

m The data warehouse allows analysts to access its data in a constrained
fashion; the multidimensional DBMS allows unfettered access.

m [Instead of the data warehouse being housed in a multidimensional DBMS,
the multidimensional DBMS and the data warehouse enjoy a complemen-
tary relationship.

One of the interesting features of the relationship between the data warehouse
and the multidimensional DBMS is that the data warehouse can provide a basis
for very detailed data that is normally not found in the multidimensional DBMS.
The data warehouse can contain a very fine degree of detail, which is lightly
summarized as it is passed up to the multidimensional DBMS. Once in the mul-
tidimensional DBMS, the data can be further summarized. In such a fashion the
multidimensional DBMS can house all but the most detailed level of data. The
analyst using the multidimensional DBMS can drill down in a flexible and effi-
cient manner over all the different levels of data found in it. Then, if needed, the
analyst can actually drill down to the data warehouse. By marrying the data
warehouse and the multidimensional DBMS in such a manner, the DSS analyst
gets the best of both worlds. The DSS analyst enjoys the efficiency of operating
most of the time in the world of the multidimensional DBMS while at the same
time being able to drill down to the lowest level of detail.

184

Another advantage is that summary information may be calculated and col-
lected in the multidimensional DBMS and then stored in the data warehouse.
When this is done, the summary data can be stored in the data warehouse for a
much longer time than if it were stored in the multidimensional DBMS.

There is still another way that the multidimensional DBMS and data warehouse
worlds are complementary. The multidimensional DBMS houses data over a
modest length of time—say 12 to 15 months, depending on the application. The
data warehouse houses data over a much longer time—>5 to 10 years. In such a
manner, the data warehouse becomes a source of research for multidimen-
sional DBMS analysts. Multidimensional DBMS analysts have the luxury of
knowing that huge amounts of data are available if needed, but they do not have
to pay the price of storing all that data in their environment.

Multidimensional DBMSs come in several flavors. Some multidimensional
DBMSs operate on a foundation of relational technology, and some operate on
a technological foundation optimal for “slicing and dicing” the data, where data
can be thought of as existing in multidimensional cubes. The latter technologi-
cal foundation is sometimes called a cube or OLAP foundation.

Both foundations can support multidimensional DBMS data marts. But there
are some differences between the two types of technological foundations:
The relational foundation for multidimensional DBMS data marts:
m Strengths:
m Can support a lot of data
Can support dynamic joining of data
Has proven technology

Is capable of supporting general-purpose update processing

If there is no known pattern of usage of data, then the relational struc-
ture is as good as any other

m Weaknesses:
m Has performance that is less than optimal

m Cannot be purely optimized for access processing

The cube foundation for multidimensional DBMS data marts:
m Strengths:

m Performance that is optimal for DSS processing

m (Can be optimized for very fast access of data

m [f pattern of access of data is known, then the structure of data can be
optimized

m (Can easily be sliced and diced

The Data Warehouse and Technology 185

m (Can be examined in many ways
m Weaknesses:
m Cannot handle nearly as much data as a standard relational format
m Does not support general-purpose update processing
m May take a long time to load
|

If access is desired on a path not supported by the design of the data, the
structure is not flexible

m (Questionable support for dynamic joins of data

Multidimensional DBMS (OLAP) is a technology, while the data warehouse is
an architectural infrastructure, and a symbiotic relationship exists between the
two. In the normal case, the data warehouse serves as a foundation for the data
that will flow into the multidimensional DBMS—feeding selected subsets of the
detailed data into the multidimensional DBMS where it is summarized and
otherwise aggregated. But in some circles there is the notion that multidimen-
sional DBMSs do not need a data warehouse for their foundation of data.

Without a data warehouse serving as the foundation for the multidimensional
DBMS, the data flowing into the multidimensional DBMS comes directly from
the older, legacy applications environment. Figure 5.6 shows the flow of data
from the legacy environment directly to the multidimensional DBMS. The
design is appealing because it is straightforward and easily achieved. A pro-
grammer can immediately start to work on building it.

Unfortunately, some major pitfalls in the architecture, as suggested by Fig-
ure 5.6, are not immediately apparent. For a variety of reasons, it makes sense
to feed the multidimensional DBMS environment from the current level of
detail of the data warehouse, rather than feeding it directly from the legacy
applications operational environment.

Figure 5.7 illustrates the feeding of the multidimensional DBMS environment
from the current level of detail of the data warehouse environment. Old, legacy
operational data is integrated and transformed as it flows into the data warehouse.

finance

multidimensional

DBMS data mart
legacy application

Figure 5.6 Building the multidimensional DBMS data mart from an application with no
current detail.

finance

multidimensional
DBMS data mart

current
detail

legacy application

Figure 5.7 The flow of data from the application environment to the current level detail
to the multidimensional DBMS data mart.

Once in the data warehouse, the integrated data is stored in the current level of
detailed data. From this level, the multidimensional DBMS is fed.

At first glance, there may not appear to be substantive differences between the
architectures shown in Figure 5.6 and Figure 5.7. In fact, putting data first into
a data warehouse may even appear to be a wasted effort. However, there is a
very good reason why integrating data into the data warehouse is the first step
in creating the multidimensional DBMS.

Consider that under normal conditions a corporation will want to build multi-
ple multidimensional DBMSs. Finance will want its multidimensional DBMS, as
will accounting. Marketing, sales, and other departments will want their own
multidimensional DBMSs. Because multiple multidimensional DBMSs will be
in the corporation, the scenario shown in Figure 5.6 becomes much more com-
plex. In Figure 5.8, Figure 5.6 has been expanded into a realistic scenario where
there are multiple multidimensional DBMSs being directly and individually fed
from the legacy systems environment.

Figure 5.8 shows that multiple multidimensional DBMSs are being fed directly
from the same legacy applications. So, what is so wrong with this architecture?

The problems are as follows:

m The amount of development required in extraction is enormous. Each dif-
ferent departmental multidimensional DBMS must have its own set of
extraction programs developed for it on a customized basis. There is a
tremendous overlap of extract processing. The amount of wasted develop-
ment work is enormous. When the multidimensional DBMSs are fed from

The Data Warehouse and Technology 187

one of the primary reasons why the direct application to multidimensional DBMS approach
is unworkable

appl a finance
marketing
appl b
human resources
appl ¢ _
management reporting
X '/"l’ 2 —
appld AN, RN,
XXV A K
‘As‘é‘}%‘ :\/&)’,’% ‘% sales
ORI
KBNRIHKK 7K
AL 0. V2V WAN .
appl e X N?"'?WW production
KN X
engineering
appl f —
accounting
appl g
manufacturing
applh S—
actuarial
appl i budgeting

Figure 5.8 There are many applications, and there are many data marts. An interface
application is needed between each occurrence. The result of bypassing the
current level of detail is an unmanageable “spider web.”

the data warehouse, only one set of integration and transformation pro-
grams is needed.

m There is no integrated foundation when the multidimensional DBMSs are
fed directly from the legacy systems environment. Each departmental
multidimensional DBMS has its own interpretation as to how different
applications should be integrated. Unfortunately, the way one department

integrates data is most likely not the way another department integrates
the same data. The result is that there is no single integrated, definitive
source of data. Conversely, when the data warehouse is built, there is a sin-
gle, definitive, integrated source of data that can be built upon.

m The amount of development work required for maintenance is enormous.
A single change in an old legacy application ripples through many extrac-
tion programs. The change must be accommodated wherever there is an
extraction program, and there are many. With a data warehouse, the effect
of change is minimized because a minimal number of programs must be
written to manage the interface between the legacy environment and the
data warehouse.

m The amount of hardware resources consumed is great. The same legacy
data is sequentially and repeatedly passed for each extraction process for
each department. In the case of the data warehouse, the legacy data is
passed only once to refresh the data in the data warehouse.

m The complexity of moving data directly from the legacy environment to the
multidimensional DBMS environment precludes effective meta data man-
agement and control. With the data warehouse, capturing and managing
meta data are both straightforward.

m The lack of reconcilability of data is an issue. When a difference in opinion
exists among various departments, each having its own multidimensional
DBMS, there is no easy resolution. With a data warehouse, resolution of
conflicts is natural and easy.

m Each time a new muitidimensional DBMS environment must be built, it
must be built from the legacy environment, and the amount of work
required is considerable. When a foundation of data is in a data warehouse,
however, building a new multidimensional DBMS environment is quick and
easy.

When an organization takes a short-term approach, justifying the data ware-
house is hard to do. The long-term costs of building many multidimensional
database environments is very high. When an organization takes a long-term
view and builds a data warehouse, the long-term total cost of data warehousing
and data marts drops significantly.

Data Warehousing across
Multiple Storage Media

One interesting aspect of a data warehouse is the dual environments often
created when a large amount of data is spread across more than one storage

The Data Warehouse and Technology 189

media. One processing environment is the DASD environment where online/
interactive processing is done. The other processing environment is often a
tape or mass store environment, which has essentially different features.
Logically, the two environments combine to form a single data warehouse.
Physically, however, the two environments are very different. In many cases,
the underlying technology that supports the DASD environment is not the
same technology that supports the mass store environment. Mixing tech-
nologies in the data warehouse environment is normal and natural when
done this way.

However, there is another way that technology can be split that is not normal or
natural. It is conceivable that the data warehouse environment—the DASD por-
tion—is split over more than one technology. In other words, part of the DASD-
based data warehouse resides on one vendor’s technology and another part of
the data warehouse resides on another vendor’s database technology. If the
split is deliberate and part of a larger distributed data warehouse, such a split is
just fine. But if the split occurs for political or historical reasons, splitting part
of a data warehouse onto different vendor platforms is not advisable.

Meta Data in the Data
Warehouse Environment

The role of meta data in the data warehouse environment is very different from
the role of meta data in the operational environment. In the operational envi-
ronment, meta data is treated almost as an afterthought and is relegated to the
same level of importance as documentation. Meta data in the data warehouse
environment takes on a very enhanced role. The importance of its role in the
data warehouse environment is illustrated in Figure 5.9. Two different commu-
nities are served by operational meta data and data warehouse meta data. Oper-
ational meta data is used by the IT professional. For years, the IT professional
has used meta data casually. The IT professional is computer-literate and is able
to find his or her way around systems. The data warehouse, though, serves the
DSS analyst community, and the DSS analyst is usually a professional, first and
foremost. There usually is not a high degree of computer literacy in the DSS
analyst community. The DSS analyst needs as much help as possible to use the
data warehouse environment effectively, and meta data serves this end quite
well. In addition, meta data is the first thing the DSS analyst looks at in planning
how to perform informational/analytical processing. Because of the difference
in the communities served and because of the role that meta data plays in the
day-to-day job function, meta data is much more important in the data ware-
house environment than it ever was in the operational environment.

operational data warehouse

meta data meta data
optional mandatory

IT DSS
professional analyst

Figure 5.9 The IT professional uses meta data on a casual basis; the DSS analyst uses
meta data regularly and as the first step of an analysis.

But there are other reasons why data warehouse meta data is important. One
such reason concerns managing the mapping between the operational environ-
ment and the data warehouse environment. Figure 5.10 illustrates this point.

Data undergoes a significant transformation as it passes from the operational
environment to the data warehouse environment. Conversion, filtering, sum-
marization, and structural changes all occur. There is a need to keep careful
track of the transformation, and the meta data in the data warehouse is the
ideal place to do so. The importance of keeping a careful record of the trans-
formation is highlighted by the events that occur when a manager needs to
trace data from the data warehouse back to its operational source (the ultimate
in the drill-down process!). In this case, the record of the transformation
describes exactly how to get from the data warehouse to the operational source
of data.

Yet another important reason for the careful management of meta data in the
data warehouse environment is shown in Figure 5.11. As mentioned, data in a
data warehouse exists for a lengthy timespan—from 5 to 10 years. Over a 5-to-
10-year time span it is absolutely normal for a data warehouse to change its
structure. Keeping track of the changing structure of data over time is a natural
task for the meta data in the data warehouse.

The Data Warehouse and Technology 191

operational data warehouse
s
mapping
—T |
P
meta data

Figure 5.10 The mapping between the operational environment and the data ware-
house environment is another major reason for the need for meta data;
without the mapping, controlling the interface is extremely difficult.

operational

-

meta data

data warehouse

meta data

stuwcture [[I 1 1 []~]
contentﬁjﬁjﬁj@@@@ Eoioj

The data warehouse contains data over a long period of time and must
manage multiple structures/definitions of data. The operational environ-

ment assumes that there is only a single correct definition of data at any
one time.

Figure 5.11

192 | K

Contrast the notion that there will be many structures of data over time in the
data warehouse environment with the meta data found in the operational envi-
ronment. In the operational environment it is assumed that at any one moment,
there is one and only one correct definition of the structure of data.

Context and Content

In the past, classical operational information systems have focused their atten-
tion on the very current data of a corporation. In the operational world, the
emphasis is on how much an account balance is, right now or how much is in
inventory, right now or what the status of a shipment is, right now. Of course,
every organization needs to know about current information. But there is real
value in looking at information over time, as is possible with data warehousing.
For example, trends become apparent that simply are not observable when
looking at current information. One of the most important defining characteris-
tics of the data warehouse is this ability to store, manage, and access data over
time.

With the lengthy spectrum of time that is part of a data warehouse comes a new
dimension of data-context. To explain the importance of contextual informa-
tion, an example is in order.

Suppose a manager asks for a report from the data warehouse for 1995. The
report is generated, and the manager is pleased. In fact, the manager is so
pleased that a similar report for 1990 is requested. Because the data warehouse
carries historical information, such a request is not hard to accommodate. The
report for 1990 is generated. Now the manager holds the two reports—one for
1995 and one for 1990—in his hands and declares that the reports are a disaster.

The data warehouse architect examines the reports and sees that the financial
statement for 1995 shows $50 million in revenue, while the report for 1990
shows a value of $10,000 for the same category. The manager declares that
there is no way that any account or category could have increased in value that
much in five years’ time.

Before giving up, the data warehouse architect points out to the manager that
there are other relevant factors that do not show up in the report. In 1990, there
was a different source of data than in 1995. In 1990, the definition of a product
was not the same as in 1995. In 1990, there were different marketing territories
than in 1995. In 1990, there were different calculations, such as for deprecia-
tion, than in 1995. In addition were many different external considerations,
such as a difference in inflation, taxation, economic forecasts, and so forth.
Once the context of the reports is explained to the manager, the contents now
appear to be quite acceptable.

The Data Warehouse and Technology 193

In this simple but common example where the contents of data stand naked
over time, the contents by themselves are quite inexplicable and unbelievable.
When context is added to the contents of data over time, the contents and the
context become quite enlightening.

To interpret and understand information over time, a whole new dimension of
context is required. While content of information remains important, the com-
parison and understanding of information over time mandates that context be
an equal partner to content. And in years past, context has been an undiscov-
ered, unexplored dimension of information.

Three Types of Contextual
Information

Three levels of contextual information must be managed:

m Simple contextual information
m Complex contextual information
m External contextual information
Simple contextual information relates to the basic structure of data itself, and
includes such things as these:
m The structure of data
m The encoding of data
m The naming conventions used for data
m The metrics describing the data, such as:
m How much data there is
m How fast the data is growing
m What sectors of the data are growing
m How the data is being used
Simple contextual information has been managed in the past by dictionaries,
directories, system monitors, and so forth. Complex contextual information
describes the same data as simple contextual information, but from a different
perspective. This type of information addresses such aspects of data as these:
m Product definitions
Marketing territories
Pricing
Packaging

Organization structure

Distribution

194 | K

Complex contextual information is some of the most useful and, at the same
time, some of the most elusive information there is to capture. It is elusive
because it is taken for granted and is in the background. It is so basic that no
one thinks to define what it is or how it changes over time. And yet, in the long
run, complex contextual information plays an extremely important role in
understanding and interpreting information over time.

External contextual information is information outside the corporation that
nevertheless plays an important role in understanding information over time.
Some examples of external contextual information include the following:

m Economic forecasts:
m [Inflation
m Financial trends
m Taxation
m Economic growth
Political information

-

m Competitive information

m Technological advancements
|

Consumer demographic movements

External contextual information says nothing directly about a company but
says everything about the universe in which the company must work and com-
pete. External contextual information is interesting both in terms of its imme-
diate manifestation and its changes over time. As with complex contextual
information, there is very little organized attempt to capture and measure this
information. It is so large and so obvious that it is taken for granted, and it is
quickly forgotten and difficult to reconstruct when needed.

Capturing and Managing
Contextual Information

Complex and external contextual types of information are hard to capture and
quantify because they are so unstructured. Compared to simple contextual
information, external and complex contextual types of information are very
amorphous. Another mitigating factor is that contextual information changes
quickly. What is relevant one minute is passé the next. It is this constant flux
and the amorphous state of external and complex contextual information that
makes these types of information so hard to systematize.

The Data Warehouse and Technology 195

Looking at the Past

One can argue that the information systems profession has had contextual
information in the past. Dictionaries, repositories, directories, and libraries are
all attempts at the management of simple contextual information. For all the
good intentions, there have been some notable limitations in these attempts
that have greatly short-circuited their effectiveness. Some of these shortcom-
ings are as follows:

m The information management attempts were aimed at the information sys-
tems developer, not the end user. As such, there was very little visibility to
the end user. Consequently, the end user had little enthusiasm or support
for something that was not apparent.

m Attempts at contextual management were passive. A developer could opt
to use or not use the contextual information management facilities. Many
chose to work around those facilities.

m Attempts at contextual information management were in many cases
removed from the development effort. In case after case, application devel-
opment was done in 1965, and the data dictionary was done in 1985. By
1985, there were no more development dollars. Furthermore, the people
who could have helped the most in organizing and defining simple contex-
tual information were long gone to other jobs or companies.

m Attempts to manage contextual information were limited to only simple
contextual information. No attempt was made to capture or manage exter-
nal or complex contextual information.

Refreshing the Data Warehouse

Once the data warehouse is built, attention shifts from the building of the data
warehouse to its day-to-day operations. Inevitably, the discovery is made that
the cost of operating and maintaining a data warehouse is high, and the volume
of data in the warehouse is growing faster than anyone had predicted. The
widespread and unpredictable usage of the data warehouse by the end-user
DSS analyst causes contention on the server managing the warehouse. Yet the
largest unexpected expense associated with the operation of the data ware-
house is the periodic refreshment of legacy data. What starts out as an almost
incidental expense quickly turns very significant.

The first step most organizations take in the refreshment of data warehouse
data is to read the old legacy databases. For some kinds of processing and
under certain circumstances, directly reading the older legacy files is the only

196

way refreshment can be achieved, for instance, when data must be read from
different legacy sources to form a single unit that is to go into the data ware-
house. In addition, when a transaction has caused the simultaneous update of
multiple legacy files, a direct read of the legacy data may be the only way to
refresh the warehouse.

As a general-purpose strategy, however, repeated and direct reads of the
legacy data are a very costly. The expense of direct legacy database reads
mounts in two ways. First, the legacy DBMS must be online and active during
the read process. The window of opportunity for lengthy sequential process-
ing for the legacy environment is always limited. Stretching the window to
refresh the data warehouse is never welcome. Second, the same legacy data is
needlessly passed many times. The refreshment scan must process 100 per-
cent of a legacy file when only 1 or 2 percent of the legacy file is actually
needed. This gross waste of resources occurs each time the refreshment
process is done. Because of these inefficiencies, repeatedly and directly read-
ing the legacy data for refreshment is a strategy that has limited usefulness
and applicability.

A much more appealing approach is to trap the data in the legacy environment
as it is being updated. By trapping the data, full table scans of the legacy envi-
ronment are unnecessary when the data warehouse must be refreshed. In addi-
tion, because the data can be trapped as it is being updated, there is no need to
have the legacy DBMS online for a long sequential scan. Instead, the trapped
data can be processed offline.

Two basic techniques are used to trapp data as update is occurring in the legacy
operational environment. One technique is called data replication; the other is
called change data capture, where the changes that have occurred are pulled
out of log or journal tapes created during online update. Each approach has its
pros and cons.

Replication requires that the data to be trapped be identified prior to the
update. Then, as update occurs, the data is trapped. A trigger is set that causes
the update activity to be captured. One of the advantages of replication is that
the process of trapping can be selectively controlled. Only the data that needs
to be captured is, in fact, captured. Another advantage of replication is that the
format of the data is “clean” and well defined. The content and structure of the
data that has been trapped are well documented and readily understandable to
the programmer. The disadvantages of replication are that extra I/O is incurred
as a result of trapping the data and because of the unstable, ever-changing
nature of the data warehouse, the system requires constant attention to the def-
inition of the parameters and triggers that control trapping. The amount of I/O
required is usually nontrivial. Furthermore, the I/O that is consumed is taken

The Data Warehouse and Technology 197

out of the middle of the high-performance day, at the time when the system can
least afford it.

The second approach to efficient refreshment is changed data capture (CDC).
One approach to CDC is to use the log tape to capture and identify the changes
that have occurred throughout the online day. In this approach, the log or jour-
nal tape is read. Reading a log tape is no small matter, however. Many obstacles
are in the way, including the following:

m The log tape contains much extraneous data.
The log tape format is often arcane.
The log tape contains spanned records.

|
-
m The log tape often contains addresses instead of data values.

m The log tape reflects the idiosyncracies of the DBMS and varies widely
from one DBMS to another.

The main obstacle in CDC, then, is that of reading and making sense out of the
log tape. But once that obstacle is passed, there are some very attractive bene-
fits to using the log for data warehouse refreshment. The first advantage is effi-
ciency. Unlike replication processing, log tape processing requires no extra I/O.
The log tape will be written regardless of whether it will be used for data ware-
house refreshment. Therefore, no incremental I/O is necessary. The second
advantage is that the log tape captures all update processing. There is no need
to go back and redefine parameters when a change is made to the data ware-
house or the legacy systems environment. The log tape is as basic and stable as
you can get.

There is a second approach to CDC: lift the changed data out of the DBMS
buffers as change occurs. In this approach the change is reflected immediately.
So reading a log tape becomes unnecessary, and there is a time-savings from the
moment a change occurs to when it is reflected in the warehouse. However,
because more online resources are required, including system software sensi-
tive to changes, there is a performance impact. Still, this direct buffer approach
can handle large amounts of processing at a very high speed.

The progression described here mimics the mindset of organizations as they
mature in their understanding and operation of the data warehouse. First, the
organization reads legacy databases directly to refresh its data warehouse.
Then it tries replication. Finally, the economics and the efficiencies of opera-
tion lead it to CDC as the primary means to refresh the data warehouse. Along
the way it is discovered that a few files require a direct read. Other files
work best with replication. But for industrial-strength, full-bore, general-

purpose data warehouse refreshment, CDC looms as the long-term final
approach to data warehouse refreshment.

Testing

In the classical operational environment, two parallel environments are set
up—one for production and one for testing. The production environment is
where live processing occurs. The testing environment is where programmers
test out new programs and changes to existing programs. The idea is that it is
safer when programmers have a chance to see if the code they have created will
work before it is allowed into the live online environment.

It is very unusual to find a similar test environment in the world of the data
warehouse, for the following reasons:

m Data warehouses are so large that a corporation has a hard time justifying
one of them, much less two of them.

m The nature of the development life cycle for the data warehouse is itera-
tive. For the most part, programs are run in a heuristic manner, not in a
repetitive manner. If a programmer gets something wrong in the data ware-
house environment (and programmers do all the time), the environment is
set up so that the programmer simply redoes it.

The data warehouse environment then is fundamentally different from the clas-

sical production environment because, under most circumstances, a test envi-
ronment is simply not needed.

Summary

Some technological features are required for satisfactory data warehouse pro-
cessing. These include a robust language interface, the support of compound
keys and variable-length data, and the abilities to do the following:

Manage large amounts of data.

Manage data on a diverse media.

Easily index and monitor data.

Interface with a wide number of technologies.

Allow the programmer to place the data directly on the physical device.

Store and access data in parallel.

Have meta data control of the warehouse.

The Data Warehouse and Technology 199

Efficiently load the warehouse.
Efficiently use indexes.

Store data in a compact way.
Support compound keys.

Selectively turn off the lock manager.

Do index-only processing.

Quickly restore from bulk storage.

Additionally, the data architect must recognize the differences between a trans-
action-based DBMS and a data warehouse-based DBMS. A transaction-based
DBMS focuses on the efficient execution of transactions and update. A data
warehouse-based DBMS focuses on efficient query processing and the handling
of a load and access workload.

Multidimensional OLAP technology is suited for data mart processing and not
data warehouse processing. When the data mart approach is used as a basis for
data warehousing, many problems become evident:

m The number of extract programs grows large.

m FEach new multidimensional database must return to the legacy operational
environment for its own data.

m There is no basis for reconciliation of differences in analysis.

m A tremendous amount of redundant data among different multidimensional
DBMS environments exists.

Finally, meta data in the data warehouse environment plays a very different role
than meta data in the operational legacy environment.

CHAPTER

The Distributed Da
Warehouse

ost organizations build and maintain a single centralized data warehouse envi-
ronment. This setup makes sense for many reasons:

m The data in the warehouse is integrated across the corporation, and an
integrated view is used only at headquarters.

m The corporation operates on a centralized business model.

m The volume of data in the data warehouse is such that a single centralized
repository of data makes sense.

m Even if data could be integrated, if it were dispersed across multiple local
sites, it would be cumbersome to access.

In short, the politics, the economics, and the technology greatly favor a single
centralized data warehouse. Still, in a few cases, a distributed data warehouse
makes sense, as we'll see in this chapter.

202 CHAPTER 6

Types of Distributed Data Warehouses

The three types of distributed data warehouses are as follows:

m Business is distributed geographically or over multiple, differing product
lines. In this case, there is what can be called a local data warehouse and a
global data warehouse. The local data warehouse represents data and pro-
cessing at a remote site, and the global data warehouse represents that
part of the business that is integrated across the business.

m The data warehouse environment will hold a lot of data, and the volume of
data will be distributed over multiple processors. Logically there is a single
data warehouse, but physically there are many data warehouses that are all
tightly related but reside on separate processors. This configuration can be
called the technologically distributed data warehouse.

m The data warehouse environment grows up in an uncoordinated manner—
first one data warehouse appears, then another. The lack of coordination
of the growth of the different data warehouses is usually a result of politi-
cal and organizational differences. This case can be called the indepen-
dently evolving distributed data warehouse.

Each of these types of distributed data warehouse has its own concerns and
considerations, which we will examine in the following sections.

Local and Global Data Warehouses

When a corporation is spread around the world, information is needed both
locally and globally. The global needs for corporate information are met by a
central data warehouse where information is gathered. But there is also a need
for a separate data warehouse at each local organization—that is, in each coun-
try. In this case, a distributed data warehouse is needed. Data will exist both
centrally and in a distributed manner.

A second case for a local/global distributed data warehouse occurs when a large
corporation has many lines of business. Although there may be little or no busi-
ness integration among the different vertical lines of business, at the corporate
level—at least as far as finance is concerned—there is. The different lines of
business may not meet anywhere else but at the balance sheet, or there may be
considerable business integration, including such things as customers, prod-
ucts, vendors, and the like. In this scenario, a corporate centralized data ware-
house is supported by many different data warehouses for each line of business.

In some cases part of the data warehouse exists centrally (i.e., globally), and
other parts of the data warehouse exist in a distributed manner (i.e., locally).

The Distributed Data Warehouse 203

To understand when a geographically or distributed business distributed data
warehouse makes sense, consider some basic topologies of processing.
Figure 6.1 shows a very common processing topology.

In Figure 6.1, all processing is done at the organization’s headquarters. If any
processing is done at the local geographically dispersed level, it is very basic,
involving, perhaps, a series of dumb terminals. In this type of topology it is very
unlikely that a distributed data warehouse will be necessary.

One step up the ladder in terms of sophistication of local processing is the case
where basic data and transaction capture activity occurs at the local level, as
shown in Figure 6.2. In this scenario, some small amount of very basic process-
ing occurs at the local level. Once the transactions that have occurred locally
are captured, they are shipped to a central location for further processing.

site A
N
N
N
N
N
AN | siteC
N _ -
N -
N - -
N -
AN _
hdgtrs |~
-7 operational
. -7 rocessin

siteB | ~ P 9

Figure 6.1 A topology of processing representative of many enterprises.

site A
N
N
capture S
activity S
N . siteC
N _ -
N _ -
RN - capture
b -7 activity
hdqtrs |~
-7 B operational
siteB |- processing
capture
activity

Figure 6.2 In some cases, very basic activity is done at the site level.

204

CHAPTER 6

Under this simple topology it is very unlikely that a distributed data warehouse
is needed. From a business standpoint, no great amount of business occurs
locally, and decisions made locally do not warrant a data warehouse.

Now, contrast the processing topology shown in Figure 6.3 with the previous
two. In Figure 6.3, a fair amount of processing occurs at the local level. Sales
are made. Money is collected. Bills are paid locally. As far as operational pro-
cessing is concerned, the local sites are autonomous. Only on occasion and for
certain types of processing will data and activities be sent to the central orga-
nization. A central corporate balance sheet is kept. It is for this type of organi-
zation that some form of distributed data warehouse makes sense.

And then, of course, there is the even larger case where much processing
occurs at the local level. Products are made. Sales forces are hired. Marketing
is done. An entire mini-corporation is set up locally. Of course, the local corpo-
rations report to the same balance sheet as all other branches of the corpora-
tion. But, at the end of the day, the local organizations are effectively their own
company, and there is little business integration of data across the corporation.
In this case, a full-scale data warehouse at the local level is needed.

Just as there are many different kinds of distributed business models, there is
more than one type of local/global distributed data warehouse, as will be dis-
cussed. It is a mistake to think that the model for the local/global distributed
data warehouse is a binary proposition. Instead, there are degrees of distrib-
uted data warehouse.

site A |_
N
local AN R
operational S .
processing S - site C
h -
i -7 - local
) hdgtrs |~ - operational
-7 processing
-7 global
siteB |-~ - operatiopal
processing
local
operational
processing

Figure 6.3 At the other end of the spectrum of the distributed data warehouse, much of
the operational processing is done locally.

The Distributed Data Warehouse 205

Most organizations that do not have a great deal of local autonomy and pro-
cessing have a central data warehouse, as shown in Figure 6.4.

The Local Data Warehouse

A form of data warehouse, known as a local data warehouse, contains data that
is of interest only to the local level. There might be a local data warehouse for
Brazil, one for France, and one for Hong Kong. Or there might be a local data
warehouse for car parts, motorcycles, and heavy trucks. Each local data ware-
house has its own technology, its own data, its own processor, and so forth. Fig-
ure 6.5 shows a simple example of a series of local data warehouses.

In Figure 6.5, a local data warehouse exists for different geographical regions
or for different technical communities. The local data warehouse serves the
same function that any other data warehouse serves, except that the scope of
the data warehouse is local. For example, the data warehouse for Brazil does
not have any information about business activities in France. Or the data ware-
house for car parts does not have any data about motorcycles. In other words,
the local data warehouse contains data that is historical in nature and is inte-
grated within the local site. There is no coordination of data or structure of data
from one local data warehouse to another.

site A
N
N
N
N
N
AN | siteC
N _ -
N -
N — -
N -
A _
hdgtrs |-
-7 operational
. -7 rocessin
siteB |~ P 9
data
warehouse

Figure 6.4 Most organizations have a centrally controlled, centrally housed data ware-
house.

206 CHAPTER 6

Europe
site A
ocal h o Africa
oca N
Ej data R _| siteC
warehouse NN -
N USA _ -7 @ local
A -7 data
o hdgtrs warehouse
Asia - B operational
siteB |-~ - processing
local
local Ej data
Ej data warehouse
warehouse
global
data
warehouse
all DEC
site A
N o all Tandem
local N
Ej data R _ | siteC
warehouse NN -7
N USA _ - - @ local
h P data
- hdars warehouse
all IBM P operational mixed IBM
siteB |-~ - processing DEG,
local Tandem
local Ej data
Ej data warehouse
warehouse
global
data
warehouse

Figure 6.5 Some circumstances in which you might want to create a two-tiered level of
data warehouse.

The Distributed Data Warehouse

The Global Data Warehouse

207

Of course, there can also be a global data warehouse, as shown in Figure 6.6.
The global data warehouse has as its scope the corporation or the enterprise,
while each of the local data warehouses within the corporation has as its scope
the local site that it serves. For example, the data warehouse in Brazil does not
coordinate or share data with the data warehouse in France, but the local data

warehouse in Brazil does share data with the corporate headquarters

data

warehouse in Chicago. Or the local data warehouse for car parts does not share
data with the local data warehouse for motorcycles, but it does share data with
the corporate data warehouse in Detroit. The scope of the global data ware-
house is the business that is integrated across the corporation. In some cases,
there is considerable corporate integrated data; in other cases, there is very lit-
tle. The global data warehouse contains historical data, as do the local data
warehouses. The source of the data for the local data warehouses is shown in
Figure 6.7, where we see that each local data warehouse is fed by its own oper-
ational systems. The source of data for the corporate global data warehouse is
the local data warehouses, or in some cases, a direct update can go into the

global data warehouse.

site A
N
N .
R site C
7
local N R -
operational S P P oeal
i N
processing BN e - operational
R L7 processing
local AN -
data hdqtrs | ocal
p
warehouse - Ej e
e local warehouse
P - operational
e g processing
site B
local
local Ej data)
operational warehouse
processing
global
local data
data warehouse
warehouse

Figure 6.6 \What a typical distributed data warehouse might look like.

208

The global data warehouse contains information that must be integrated at the
corporate level. In many cases, this consists only of financial information. In
other cases, this may mean integration of customer information, product infor-
mation, and so on. While a considerable amount of information will be peculiar
to and useful to only the local level, other corporate common information will
need to be shared and managed corporately. The global data warehouse con-
tains the data that needs to be managed globally.

An interesting issue is commonality of data among the different local data
warehouses. Figure 6.8 shows that each local warehouse has its own unique
structure and content of data. In Brazil there may be much information about
the transport of goods up and down the Amazon. This information is of no use
in Hong Kong and France. Conversely, information might be stored in the
French data warehouse about the trade unions in France and about trade under
the Euro that is of little interest in Hong Kong or Brazil.

Or in the case of the car parts data warehouse, an interest might be shared in
spark plugs among the car parts, motorcycle, and heavy trucks data ware-
houses, but the tires used by the motorcycle division are not of interest to the

site A |
S site C
Ny 4
AN 7
local S /
operational < . local
. 7 .
processing RN ¢ ’ operational
7/ .
S Y processing

local N %
Ej data hdatrs Ej local

warehouse - data
e
P warehouse
- local .
P operational
e .
: - processing
site B
Ej local
local \(/jvztfehouse
operational
processing
local
Ej data
warehouse

Figure 6.7 The flow of data from the local operational environment to the local data
warehouse.

The Distributed Data Warehouse 209

heavy trucks or the car parts division. There is then both commonality and
uniqueness among local data warehouses.

Any intersection or commonality of data from one local data warehouse to
another is purely coincidental. There is no coordination whatsoever of data,
processing structure, or definition between the local data warehouses shown in
Figure 6.8.

However, it is reasonable to assume that a corporation will have at least some
natural intersections of data from one local site to another. If such an intersec-
tion exists, it is best contained in a global data warehouse. Figure 6.9 shows

site A |
S site C
N 4
AN 7
local N /
. N 7
operational AN 4 local
. /7 .
processing N N ’ operational
7 .
~ / processing

local < %
Ej data hdaqtrs Ej local

warehouse x data
e local warehouse
|:| - operational
D - processing DD
B ga -
7 O
P Ej local
. - data
site B warehouse
local DD
operational
processing O |:| 0
local
Ej data
warehouse
E-8-m
uemm
O o B
O

Figure 6.8 The structure and content of the local data warehouses are very different.

210

CHAPTER 6

site A
site C
local
operational local
processing operational
processing
local
Ej data hdatrs local
warehouse Ej data
local warehouse
operational
processing
Ej local
. data
site B warehouse
local
operational
processing
local
Ej data
warehouse
global data
warehouse

Figure 6.9 The global data warehouse is fed by the outlying operational systems.

that the global data warehouse is fed from existing local operational systems.
The common data may be financial information, customer information, parts
vendors, and so forth.

Intersection of Global and Local Data

Figure 6.9 shows that data is being fed from the local data warehouse environ-
ment to the global data warehouse environment. The data may be carried in
both warehouses, and a simple transformation of data may occur as the data is
placed in the global data warehouse. For example, one local data warehouse
may carry its information in the Hong Kong dollar but convert to the U.S. dollar
on entering the global data warehouse. Or the French data warehouse may
carry parts specifications in metric in the French data warehouse but convert
metric to English measurements on entering the global data warehouse.

The Distributed Data Warehouse 211

The global data warehouse contains data that is common across the corpora-
tion and data that is integrated. Central to the success and usability of the dis-
tributed data warehouse environment is the mapping of data from the local
operational systems to the data structure of the global data warehouse, as seen
in Figure 6.10. This mapping determines which data goes into the global data
warehouse, the structure of the data, and any conversions that must be done.
The mapping is the most important part of the design of the global data ware-
house, and it will be different for each local data warehouse. For instance, the
way that the Hong Kong data maps into the global data warehouse is different
from how the Brazil data maps into the global data warehouse, which is yet dif-
ferent from how the French map their data into the global data warehouse. It is
in the mapping to the global data warehouse that the differences in local busi-
ness practices are accounted for.

The mapping of local data into global data is easily the most difficult aspect of
building the global data warehouse.

Figure 6.10 shows that for some types of data there is a common structure of
data for the global data warehouse. The common data structure encompasses
and defines all common data across the corporation, but there is a different
mapping of data from each local site into the global data warehouse. In other
words, the global data warehouse is designed and defined centrally based on
the definition and identification of common corporate data, but the mapping of
the data from existing local operational systems is a choice made by the local
designer and developer.

It is entirely likely that the mapping from local operational systems into global
data warehouse systems will not be done as precisely as possible the first time.
Over time, as feedback from the user is accumulated, the mapping at the local
level improves. If ever there were a case for iterative development of a data
warehouse, it is in the creation and solidification of global data based on the
local mapping.

A variation of the local/global data warehouse structure that has been dis-
cussed is to allow a global data warehouse “staging” area to be kept at the local
level. Figure 6.11 shows that each local area stages global warehouse data
before passing the data to the central location. For example, say that in France
are two data warehouses—one a local data warehouse used for French deci-
sions. In this data warehouse all transactions are stored in the French franc. In
addition, there is a “staging area” in France, where transactions are stored in
U.S. dollars. The French are free to use either their own local data warehouse
or the staging area for decisions. In many circumstances, this approach may
be technologically mandatory. An important issue is associated with this
approach: Should the locally staged global data warehouse be emptied after the

212 CHAPTER 6

site A

local
operational
processing

site B

local
operational
processing

mapping into the global site C
data structure

local
operational
processing

o0
@5 &
O
hdgtrs
local
operational
processing

Bk
058
O
global
data
warehouse

Figure 6.10 There is a common structure for the global data warehouse. Each local site
maps into the common structure differently.

data that is staged inside of it is transferred to the global level? If the data is not
deleted locally, redundant data will exist. Under certain conditions, some
amount of redundancy may be called for. This issue must be decided and poli-

cies and procedures put into place.

site A

local
operational
processing

local
data

warehouse

global
data warehouse
(staging area)

site B

local
operational
processing

local
data

warehouse

global
data warehouse
(staging area)

The Distributed Data Warehouse 213

site C

local
operational
processing

local
data

warehouse

global
data warehouse
(staging area)

hdatrs

local
Ej data

\

local
operational
processing

warehouse

global
data warehouse

Figure 6.11 The global data warehouse may be staged at the local level, then passed to
the global data warehouse at the headquarters level.

For example, the Brazilian data warehouse may create a staging area for its
data based on American dollars and the product descriptions that are used
globally. In the background the Brazilians may have their own data warehouse
in Brazilian currency and the product descriptions as they are known in Brazil.
The Brazilians may use both their own data warehouse and the staged data
warehouse for reporting and analysis.

214

CHAPTER 6

Though any of several subject areas may be candidates for the first global data
warehouse development effort, many corporations begin with corporate finance.
Finance is a good starting point for the following reasons:

m |t is relatively stable.
m [t enjoys high visibility.

m [t is only a fraction of the business of the organization (except, of course,
for organizations whose business is finance).

m [t is always at the nerve center of the organization.

m [t entails only a modicum of data.

In the case of the global warehouse being discussed, the Brazilian, the French,
and the Hong Kong data warehouses would all participate in the building of a
corporatewide financial data warehouse. There would be lots of other data in
the operations of the Brazilian, French, and Hong Kong business units, but only
the financial information would flow into the global data warehouse.

Because the global data warehouse does not fit the classical structure of a data
warehouse as far as the levels of data are concerned, when building the global
data warehouse, one must recognize that there will be some anomalies. One
such anomaly is that the detailed data (or, at least, the source of the detailed
data) resides at the local level, while the lightly summarized data resides at the
centralized global level. For example, suppose that the headquarters of a com-
pany is in New York and it has outlying offices in Texas, California, and Illinois.
The details of sales and finance are managed independently and at a detailed
level in Texas, California, and Illinois. The data model is passed to the outlying
regions, and the needed corporate data is translated into the form that is nec-
essary to achieve integration across the corporation. Upon having made the
translation at the local level, the data is transmitted to New York. The raw,
untranslated detail still resides at the local level. Only the transformed, lightly
summarized data is passed to headquarters. This is a variation on the theme of
the classical data warehouse structure.

Redundancy

One of the issues of a global data warehouse and its supporting local data ware-
houses is redundancy or overlap of data. Figure 6.12 shows that, as a policy,
only minimal redundant data exists between the local levels and the global lev-
els of data (and in this regard, it matters not whether global data is stored
locally in a staging area or locally). On occasion, some detailed data will pass
through to the global data warehouse untouched by any transformation or con-
version. In this case, a small overlap of data from the global data warehouse to

The Distributed Data Warehouse 215

the local data warehouse will occur. For example, suppose a transaction occurs
in France for US$10,000. That transaction may pass through to the global data
warehouse untouched.

On the other hand, most data passes through some form of conversion, trans-
formation, reclassification, or summarization as it passes from the local data
warehouse to the data warehouse. In this case, there is—strictly speaking—no
redundancy of data between the two environments. For example, suppose that
a HK$175,000 transaction is recorded in Hong Kong. The transaction may be
broken apart into several smaller transactions, the dollar amount may be con-
verted, the transaction may be combined with other transactions, and so forth.
In this case, there is certainly a relationship between the detailed data found in
the local data warehouse and the data found in the global data warehouse. But
there is no redundancy of data between the two environments.

A massive amount of redundancy of data between the local and the global data
warehouse environments indicates that the scopes of the different warehouses
probably have not been defined properly. When massive redundancy of data
exists between the local and the global data warehouse environments, it is only
a matter of time before spider web systems start to appear. With the appearance
of such systems come many problems—reconciliation of inconsistent results,
inability to create new systems easily, costs of operation, and so forth. For this
reason, it should be a matter of policy that global data and local data be mutu-
ally exclusive with the exception of very small amounts of data that incidentally
overlap between the two environments.

site A hdqtrs
local local
operational operational
processing processing
mutually
exclusive
local local
j data j data
warehouse mutual_ly warehouse
exclusive
global global
data warehouse data warehouse
(staging area) (staging area)

Figure 6.12 Data can exist in either the local data warehouse or the global data ware-
house, but not both.

216

CHAPTER 6

Access of Local and Global Data

In line with policies required to manage and structure the local and the global
data warehouses is the issue of access of data. At first, this issue seems to be
almost trivial. The obvious policy is that anyone should be able to get at any
data. Some important ramifications and nuances come into play, however.

Figure 6.13 shows that some local sites are accessing global data. Depending on
what is being asked for, this may or may not be an appropriate use of data ware-
house data. For example, an analyst in Brazil may be analyzing how Brazilian
revenues compare to total corporate revenues. Or a person in France may be
looking at total corporate profitability. If the intent of the local analysis is to
improve local business, the access of global data at the local level is probably a
good policy. If the global data is being used informationally, on a one-time-only
basis, and to improve local business practices, the access of global data at the
local level is probably acceptable.

As a principle, local data should be used locally and global data should be used
globally. The question must be raised, then, why is global analysis being done
locally? For example, suppose a person in Hong Kong is comparing total cor-
porate profitability with that of another corporation. There is nothing wrong
per se with this analysis, except that this sort of global analysis is best per-
formed at the headquarters level. The question must be asked—what if the per-
son in Hong Kong finds that globally the corporation is not competing well with

hdqtrs

local
operational
processing

site A local
Ej data

warehouse

site B

site C

global
data warehouse

Figure 6.13 An important issue to be resolved is whether local sites should be access-
ing the global data warehouse.

The Distributed Data Warehouse 217

other corporations? What is the person in Hong Kong going to do with that
information? The person may have input into global decisions, but he or she is
not in a position to effect a such a decision. Therefore, it is questionable
whether a local business analyst should be looking at global data for any other
purpose than that of improving local business practices. As a rule, the local
business analyst should be satisfied using local data.

Another issue is the routing of requests for information into the architected
information environment. When only a single central data warehouse existed,
the source of a request for information was not much of an issue. But when data
is distributed over a complex landscape, such as a distributed data warehouse
landscape, as shown in Figure 6.14, there is the consideration of ensuring the
request originated from the appropriate place.

For example, asking a local site to determine total corporate salaries is inap-
propriate, as is asking the central data warehouse group what a contractor was
paid last month at a particular site for a particular service. With local and global
data there is the issue of origin of request, something not encountered in the
simple centralized data warehouse environment.

Another important issue of local/global distributed data warehousing is the
transfer of data from the local data warehouse to the global data warehouse.
There are many facets to this issue:

m How frequently will the transfer of data from the local environment to the
global environment be made? Daily? Weekly? Monthly? The rate of transfer
depends on a combination of factors. How quickly is the data needed in the
global data warehouse? How much activity has occurred at the local level?
What volume of data is being transported?

m Is the transportation of the data from the local environment to the global
data warehouse across national lines legal? Some countries have Dracon-
ian laws that prevent the movement of certain kinds of data across their
national boundaries.

m What network will be used to transport the data from the local environ-
ment to the global environment? Is the Internet safe enough? Reliable
enough? Can the Internet safely transport enough data? What is the backup
strategy? What safeguards are in place to determine if all of the data has
been passed?

m What safeguards are in place to determine whether data is being hacked
during transport from the local environment to the global environment?

m What window of processing is open for transport of data from the local envi-
ronment to the global environment? Will transportation have to be done dur-
ing the hours when processing against the data warehouse will be heavy?

218

CHAPTER 6
site A
local
operational
rocessin
P g QUERY —“How much money did we spend last
ocal month across the corporation on salaries?”
oca
data QUERY —“What was EDS paid last month in
warehouse Tampa for facilities maintenance?”
global
data warehouse
(staging area)

hdgtrs
site B local .
operational
processing
local
operational local
processing Ej data
warehouse
local
data
warehouse
global
global data warehouse

data warehouse (staging area)

(staging area)

Figure 6.14 Queries need to be routed to different parts of the architecture to be
answered properly.

m What technology is the local data in, and what technology is the global data
in? What measures must be taken to convert the local technology to the
global technology? Will data be lost in the translation?

Many issues relate to the physical movement of the data into the global data
warehouse environment. In some cases, these issues are mundane; in others,
they are anything but.

The Distributed Data Warehouse 219

A related yet separate issue not addressed in this chapter is global operational
data. Thus far, this chapter has assumed that every local site has its own unique
operational data and processing. However, it is entirely possible that there is a
degree of commonality between the operational systems found at each local site.
In this case, some degree of corporate operational data and processing might be
desirable. For example, some customers may need to be handled globally, such
as large multinational corporations like Coca-Cola, McDonalds, IBM, and AT&T.
Pricing considerations, size-of-order considerations, and delivery considerations
may be treated differently globally than similar decisions are treated locally. In
the case of global operational processing, that global operational data merely
becomes another source of data into the global data warehouse. But there is still
the distinction between operational data and DSS informational data.

Underlying the whole issue of the distributed data warehouse is complexity. In
a simple central data warehouse environment, roles and responsibilities are
fairly straightforward. In a distributed data warehouse environment, however,
the issues of scope, coordination, meta data, responsibilities, transfer of data,
local mapping, and more make the environment complex indeed.

One of the major considerations for a global data warehouse is whether the
data warehouse should be built centrally or globally. While tempting to say that
a global data warehouse should be designed and built centrally, doing so is
patently a mistake. With a centralized construction of a global data warehouse,
there is—at best—only a marginal local buy-in to the global data warehouse.
This means that the definition of the mapping between the local systems and
the needs for global data is done centrally, not locally. To succeed, there must
be local management and control of the mapping process. Stated differently,
the single most difficult part of the building and population of the global data
warehouse is the mapping of the local data to the global data. And this mapping
cannot be done centrally; it must be done locally.

For example, suppose the headquarters organization tries to map Brazilian data
into the global data warehouse. This poses the following problems:

m Portuguese is not the native tongue of the headquarters organization.

m Headquarters personnel do not understand local business practices and
customs.

m Headquarters personnel do not understand local legacy applications.

Headquarters personnel do not understand the local data warehouse.

m Headquarters personnel are not on hand to keep abreast of day-to-day
changes in local systems.

There are then a plethora of reasons why the mapping of local data into the
global data warehouse environment cannot be done by centralized personnel.

220 CHAPTER 6

Therefore, the local organization must be a part of the building of the global
data warehouse.

A final observation is that the local data needs to be in as flexible a form as pos-
sible. This usually means that the local data must be organized relationally. If
the local data is organized in a star join multidimensional format, it will be
difficult to break apart and restructure for the global data warehouse.

The Technologically Distributed
Data Warehouse

The spread of a company over multiple geographical locations or over many
different product lines is not the only reason why a distributed data warehouse
is appealing. There are other rationales as well. One case for a different type of
a distributed warehouse is that of placing a data warehouse on the distributed
technology of a vendor. Client/server technology fits this requirement nicely.

The first question is, can a data warehouse be placed on distributed technol-
ogy? The answer is yes. The next question is, what are the advantages and dis-
advantages of using distributed technology for a data warehouse? The first
advantage of a technologically distributed data warehouse is that the entry cost
is cheap. In other words, the cost of hardware and software for a data ware-
house when initially loaded onto distributed technology is much less than if the
data warehouse were initially loaded onto classical, large, centralized hard-
ware. The second advantage is that there is no theoretical limit to how much
data can be placed in the data warehouse. If the volume of data inside the ware-
house begins to exceed the limit of a single distributed processor, then another
processor can be added to the network, and the progression of adding data con-
tinues in an unimpeded fashion. Whenever the data grows too large, another
processor is added.

Figure 6.15 depicts a world in which there may be an infinite amount of data in
the data warehouse. This is appealing because a data warehouse will contain
much data (but not an infinite amount!).

There are, however, some considerations. As the data warehouse starts to
expand beyond a few processors (i.e., servers), an excessive amount of traffic
starts to appear on the network. The increased traffic appears when a request
for data overlaps from one processor to another. For example, suppose one
processor holds data for the year 1998, another processor for 1999, another for
2000, and yet another for 2001. When a request is made for data from 1998 to
2001, the result set for that query must pass over the boundaries of the proces-
sor that originally held the data. In this case, data from four processors must
be gathered. In the process, data passes across the network and increases the
traffic.

The Distributed Data Warehouse 221

day 1 A single server holds all the

data for the warehouse.

Now two servers hold the
data for the warehouse.

day 2

The number of servers that hold the
warehouse data can be expanded ad

infinitum (at least in theory) for as much
data as desired in the data warehouse.

Figure 6.15 The progression of adding more servers to hold the data warehouse data.

The issue arises not only of a query accessing data housed by multiple processors,
but of a large amount of data needing to be transported from a single processor.
For example, suppose a query wishes to access all 1999 data and all 2000 data.
Such a query will pull data from one or the other processor. Figure 6.16 depicts a
query that wishes to access a large amount of data from multiple servers.

Techniques and approaches do of course exist to deal with a data warehouse
that is technically distributed over multiple servers. Ironically, the problems
grow with time, as the warehouse becomes fully populated and as the number
of servers grows. In the early days of a distributed data warehouse when there
is very little data and only a few servers, the problems discussed here are hardly
obvious. In the more mature days of a data warehouse, however, the data and
the processing environment become more difficult to manage.

The Independently Evolving
Distributed Data Warehouse

Yet a third flavor of distributed data warehouse is one in which independent
data warehouses are developed concurrently and in an uncontrolled manner.

The first step many corporations take in data warehousing is to put up a data
warehouse for a financial or marketing organization. Once success follows the

222 CHAPTER 6

data
warehouse

Figure 6.16 A query that accesses a large amount of data from multiple data ware-
house servers.

initial warehouse effort, other parts of the corporation naturally want to build on
the successful first effort. In short order, the data warehouse architect has to
manage and coordinate multiple data warehouse efforts within the organization.

The Nature of the Development Efforts

The first issue facing the data architect who must manage multiple data ware-
house development efforts is the nature of the development efforts. Unless the
data architect knows what kinds of efforts are occurring and how they relate to
the overall architecture, he or she will have a very difficult time managing and
coordinating them. Because the issues of development vary considerably
depending on the approach, different types of data warehouse development
efforts require very different approaches to management.

Multiple data warehouse development efforts occur in four typical cases, as
outlined in Figure 6.17.

In the first, rare case shown in Figure 6.17, a corporation has totally separate
and unintegrated lines of business for which data warehouses are being inde-
pendently built by different development groups. The diverse lines of business
report to the corporation, but other than sharing a company name, there is no
business integration or sharing of data within the company. Such a corporate

The Distributed Data Warehouse 223

J O O O

d/w A d/w B d/w C d/w D
line of business line of business line of business line of business
A B C D

completely unintegrated lines of business each with their own data warehouses

] O O O

northeast midwest western southwest
d/w d/w d/w d/w

the same data warehouse but with distributed parts

lightly OLAP
summarized
T

detailed
data

different levels of data within the same data warehouse

—

different non-distributed parts of the detailed level of the data warehouse

Figure 6.17 Four possible meanings to “multiple groups building the data warehouse,”
each interpretation very different from the others.

structure is not unknown, but it is not common. In this case, there is very little
danger that one data warehouse development effort will conflict with another.
Accordingly, there is little or no need for cross-management and coordination
of data warehouse development efforts.

224 CHAPTER 6

The second case of multiple data warehouse efforts occurring simultaneously
happens when a corporate distributed data warehouse is being built and various
development groups are creating different parts of the same data warehouse. In
this case, the same detailed data is being built by different groups of developers,
but the data is distributed across different locations. For example, suppose a car
manufacturer is building a manufacturing data warehouse in Detroit and
another manufacturing data warehouse in Canada. The same detailed data finds
its way into the data warehouse in both places. Unless extraordinary measures
are taken, likely many conflicting analyses will occur. This case for multiple
development efforts is as common as the previous case is rare. Yet because this
case is so common, it requires a great deal of attention. It requires discipline and
close coordination among the groups to achieve a collectively satisfying result.
The danger of not coordinating this effort is that much waste may occur through
redundant storage and manipulation of massive amounts of data. If data is cre-
ated redundantly, the resulting data warehouse may well be ineffective because
there will be a classic spider web in the DSS environment.

The third case of multiple data warehouse development occurring simultane-
ously happens when different groups are building different levels of data (i.e.,
summarized data and detailed data) in the data warehouse environment. Like
the preceding case, this scenario is also very common. However, for a variety of
reasons, it is much easier to manage than either of the two previous cases.
Because of the differences in the levels of data, there are different uses and
expectations. And coordination between the two groups is likely to be a
straightforward exercise. For example, one group of people might be building a
data warehouse to capture and analyze each bank transaction at the lowest
level of detail. Another group of analysts might be creating customer records
summarized up to the monthly level. The interface between the two groups is
simple. The detailed transactions are summarized on a monthly basis to create
the aggregate/summary record for the customer.

The fourth case occurs when multiple groups are trying to build different parts
of the current level of detail of the data warehouse environment in a nondis-
tributed manner. This is a somewhat rare phenomenon, but when it occurs, it
mandates special attention. There is much at stake in this last case, and the data
architect must be aware of what the issues are and how they relate to success.

Each of these cases are discussed in the following sections, along with their
issues, advantages, and disadvantages.

Completely Unrelated Warehouses

The building and operation of completely unrelated warehouses is shown in
Figure 6.18. A corporation has four lines of business—golf course management,
a steel mill, retail banking, and a fast-food franchise. There is no integration of

The Distributed Data Warehouse 225

O O O

d/w A d/w B d/'w C d/w D
fast food steel retail golf course
franchise mill banking management

Figure 6.18 Four totally independent enterprises where there is little or no integration
of data at the business level.

corporate financial

data model
d/w A d/w B d/w C d/w D
fast food steel retail golf course
franchise mill banking management

Figure 6.19 Even the most disparate of business enterprises share common corporate
financial data.

the businesses whatsoever. A customer of one business may be a customer of
another business, and there is no desire to link the two relationships. The ongo-
ing data warehouse efforts have no reason to be coordinated. All the way from
modeling to selection of base technology (i.e., platform, DBMS, access tools,
development tools, etc.), each of the different businesses could operate as if it
were completely autonomous.

For all the autonomy of the lines of business, they are necessarily integrated at
one level: the financial balance sheet. If the different lines of business report to
a single financial entity, there must be integration at the balance-sheet level. In
this situation, a corporate data warehouse might need to be built that reflects
the corporate finances. Figure 6.19 shows a corporate financial data warehouse
sitting above the different businesses.

The financial corporate data warehouse contains simple (and abstract) entities
such as expenses, revenues, capital expenditures, depreciation, and the like.
There is very little, if any, business data beyond that found on every balance
sheet. (In other words, no attempt is made for a common corporate description

226

CHAPTER 6

P mm e e e oo,
| |
| |
| |
| |
| |
| |
I Africa Canada Far East South America :
| diw d/w d/w diw diw \

|

Figure 6.20 Logically the same data warehouse.

of customer, product, sale, and so on in the financial data warehouse.) Of
course, the data feeding the corporate financial data warehouse depicted in Fig-
ure 6.19 may come either from the “local” data warehouse or from the opera-
tional systems found at the individual operating company level.

Meta data is vital at the local level. With a corporate financial data warehouse,
it is also needed at the corporate financial level. However, in this case, because
no real business integration exists, there is no need to tie any of the meta data
together.

Distributed Data Warehouse Development

Unlike the case of the unrelated warehouses, most businesses have some
degree of integration among their disparate parts. Very few businesses are as
autonomous as those depicted in Figure 6.19. A much more common scenario
for the development of multiple data warehouse efforts is shown in Figure 6.20.

In Figure 6.20 a corporation has different sites in different parts of the world—
one in the United States and Canada, one in South America, one in the Far East,
and one in Africa. Each site has its own unique data, with no overlap of data—
particularly of detailed transaction data—from one site to the next. The com-
pany wants to create a data warehouse for each of the disparate entities as a
first effort in achieving an architected environment. There is some degree of
business integration among the different organizations. At the same time, it is
assumed that distinct business practices are carried on in each locale. Such an
organization of corporate entities is common to many companies.

The first step many organizations make toward data warehousing is to create a
local data warehouse at each geographical entity. Figure 6.21 shows the cre-
ation of a local data warehouse.

Each locale builds its own unique autonomous data warehouse according to its
needs. Note that there is no redundant detailed data among the different
locales, at least as far as transaction data is concerned. In other words, a unit of

The Distributed Data Warehouse 227

— =3 O

Canada d/w

Africa diw

d/w

us South America
d/w d/w

Figure 6.21 Local data warehouses are built at each of the autonomous operating divi-
sions.

data reflecting transactions that belongs in Africa would never be found in the
local data warehouse for Europe.

There are several pros and cons to this approach to building the distributed cor-
porate data warehouse. One advantage is that it is quick to accomplish. Each
local group has control over its design and resources. A sense of autonomy and
control may make each local organization happy. As such, the benefits of the
data warehouse can be proven throughout the corporation on a real-time basis.
Within six months the local data warehouses can be up and running, and the
organization at the local level can be deriving the benefits. The disadvantage is
that if there is any commonality in the structure (not the content) of data across
the organization, this approach does nothing to recognize or rationalize that
commonality.

Coordinating Development across
Distributed Locations

An alternative approach is to try to coordinate the local data warehouse devel-
opment efforts across the different local organizations. This sounds good in the-
ory, but in execution it has not proved to be effective. The local development
groups never collectively move at the same pace, and the local groups look on
the central development group trying to coordinate the many local development
efforts as a hindrance to progress. A separate data model is built to provide the
foundation of the data warehouse design for each of the separate locales.

One day, after the worth of data warehousing has been proven at the local level,
the corporation decides to build a corporate data warehouse (see Figure 6.22).

228 CHAPTER 6

= O

Far East
Canada diw
Africa diw
d/w
us corporate Ej
diw data warehouse

South America
d/w

Figure 6.22 One day the decision is made to build a corporate data warehouse.

The corporate data warehouse will reflect the business integration across the
different divisions and locales. The corporate data warehouse will be related to,
but still distinct from, the local data warehouses. The first step in building the
corporate data warehouse is to create a corporate data model for that portion
of the business that will be reflected in the corporate data warehouse. As a gen-
eral rule, the corporate data model that is built for the first iteration of the cor-
porate data warehouse will be small and simple, and it will be limited to a
subset of the business. Figure 6.23 illustrates the building of the corporate data
model after which the corporate data warehouse will be shaped.

The Corporate Data
Model—Distributed

The corporate data model reflects the integration of business at the corporate
level. As such, the corporate data model may overlap considerably with por-
tions of the local data models. Such an overlap is healthy and normal. In other
cases, the corporate data model will be different from the local data models. In
any case, it is up to the local organization to determine how the fit is to be made
between the corporate need for data and the local ability to provide it. The local
organization knows its own data better than anyone, and it is best equipped to
show how local data needs to be shaped and reshaped to meet the specifica-
tions of the corporate design of data for the data warehouse.

The Distributed Data Warehouse 229

Far East
Canada d/w
Africa diw
d/w
corporate
data model
South America

us corporate d/w
diw data warehouse

Figure 6.23 The corporate data model is created.

While there may very well be overlap in the structural design of data from one
local level to the next, there is no overlap to any great extent in the content of
data. Figure 6.24 shows the building and population of the corporate data ware-
house from the local levels.

The source of the data going to the corporate data warehouse can come from
the local data warehouse or from the local operational systems. The determi-
nation of the system of record should be a decision that is made entirely at the
local level. Most certainly, several iterations of definition of the system of
record will be needed.

In addition, an important design issue is how to create and transport the local
system of record data from the technology found at the local level into the tech-
nology of the corporate data warehouse. In some cases, the official “staged”
data is kept at the local level. In other cases, the staged data is passed on to the
corporate environment with no access at the local level.

As a rule, the data in the corporate data warehouse is simple in structure and
concept. Figure 6.25 shows that data in the corporate data warehouse appears
to be detailed data to the DSS analyst at the corporate level, and at the same
time it appears to be summary data to the DSS analyst at the local level. This
apparent contradiction is reconciled by the fact that the appearance of summa-
rization or detail is strictly in the eye of the beholder.

230 CHAPTER 6

|

Canada Far East

d/w d/w
Africa /
d/w \

South America

/ — dw

corporate
us data warehouse

d/w

Figure 6.24 The corporate data warehouse is loaded from the different autonomous
operating companies.

South
Amerlca
summary
data \
dedta;Ied corporate
I ata data
warehouse

Figure 6.25 What is summary at one level is detailed at another.

The Distributed Data Warehouse 231

The corporate data warehouse of the distributed database can be contrasted
with the corporate financial data warehouse of the completely unrelated com-
panies. Figure 6.26 makes this comparison.

In many ways, the data warehouse of the distributed corporation is very similar
to the data warehouse of the unrelated companies. However, although there are
similarities in design and operation, there is one major difference. The corpo-
rate distributed data warehouse extends into the business itself, reflecting the
integration of customer, vendor, product, and so forth. As such, the corporate

4 O C

Canada Far East

Africa of W / d/w
d/w

g
\ // T

d/w
corporate
data strong similarities
d/w warehouse
corporate financial
data model
d/w A d/'w B d/w C d/w D
fast food steel retail golf course
franchise mill banking management

Figure 6.26 The data warehouse of a distributed corporation can be very similar to that
of unrelated companies.

232 CHAPTER 6

distributed data warehouse represents the very fabric of the business itself.
The corporate data warehouse for unrelated companies, though, is for finance
alone. The instant that there is a desire to use the corporate financial data
warehouse for anything other than the financial relationship of the different
parts of the corporation, there will be disappointment with the corporate
financial data warehouse. The difference between the two data warehouses,
then, is one of depth.

Meta Data in the
Distributed Warehouse

Meta data plays a very important role across the distributed corporate data
warehouse. It is through meta data that the coordination of the structure of
data is achieved across the many different locations where the data warehouse
is found. Not surprisingly, meta data provides the vehicle for the achievement
of uniformity and consistency.

Building the Warehouse on Multiple Levels

The third scenario of a company’s simultaneous data warehouse development
occurs when different development groups are building different levels of the
data warehouse, as seen in Figure 6.27. This case is very different from the case
of the distributed data warehouse development. In this case, Group A is build-
ing the high level of summarization of data, Group B is building the middle level
of summarization, and Group C is building the current level of detail.

The scenario of multiple levels of data warehouse development is very com-
mon. Fortunately, it is the easiest scenario to manage, with the fewest risks.

development development

group A / group B

4 P
summarized

detailed data
developmen/

group C

Figure 6.27 Different development groups are developing different parts of the data
warehouse environment at different levels of the architecture.

The Distributed Data Warehouse 233

The primary concern of the data architect is to coordinate the efforts of the
different development teams, both in terms of the specification of content and
structure and in terms of the timing of development. For example, if Group A
is significantly ahead of Group B or C, there will be a problem: When Group
A is ready to populate its databases at the summary level, there may be no
detailed data to work with.

One of the interesting aspects of different groups building different levels of
summarization of the same data warehouse is that it is the group that is build-
ing the current level of detail that uses the data warehouse data model. Fig-
ure 6.28 illustrates this relationship.

The data model for the data warehouse directly reflects the design and devel-
opment effort by the group doing current-level detailed analysis and design. Of
course, indirectly the data warehouse data model reflects the needs of all
groups. But because other groups are summarizing from the data found at the
current level of detail, they have their own interpretation of what is needed. In
most cases, the groups working on the higher levels of summarization have
their own data models that reflect their own specialized needs.

One of the issues of managing multiple groups building different levels of sum-
marization is the technological platforms on which the data warehouse levels
are built. Normally, different groups choose different technological platforms.
In fact, for the different development groups to choose the same platform
would be very unusual. There are several reasons for this, though the primary
one is cost. The detailed level of data requires an industrial-strength platform
because of the large volume of data that will have to be handled. The different

development development

group A / group B

) OLAP
summarized
% detailed data
data mo/

development
group C

Figure 6.28 The development organization that is developing the lowest level of detail
is the organization that uses the data model.

234

CHAPTER 6

levels of summarization will require much less data, especially at the higher lev-
els of summarization. It is overkill (and expensive) to place the higher levels of
summarized data on the same platform as the detailed data (although it can be
done).

Another reason is that the alternative platforms offer a wide variety of special-
ized software, much of which is not to be found on the monolithic platforms
that house detailed data. In any case, whether the different levels of data are on
a single platform or on multiple platforms, meta data must be carefully stored
and managed, so that continuity from one level of detail to the next can be
maintained.

Because different platforms are commonly used for the different levels of data
that are being developed by different groups, the issue of interconnectivity
arises. Figure 6.29 shows the need for interconnectivity from one level to the
next.

Several aspects of interconnectivity need to be addressed. One issue is the com-
patibility of access at the call level. In other words, is there compatible syntax
between the two technologies that make up the detailed and the summary data
between any two levels of the warehouse? If there is not at least some degree of
compatibility, the interface will not be usable. Another aspect of the intercon-
nectivity issue is the effective bandwidth of the interface. If very heavy traffic is
being created by processing that occurs on either level of the data warehouse,
the interface between the two environments can become a bottleneck.

However the groups that work on the data warehouse are coordinated, one
requirement remains clear: The group that manages the lower-level detail must
form a proper foundation of data for those groups that will be summarizing the
data and creating a new level. This need is depicted in Figure 6.30.

The coordination among the groups can be as simple as an agreement on a data
model that satisfies the needs of all parties. Or the agreement can be much
more elaborate, if circumstances warrant.

lightly

4 OLAP
summarized

0O
\/

Figure 6.29 Interconnectivity between the different levels of the data warehouse is an
important issue.

The Distributed Data Warehouse 235

summary
] i
lightly
summarized |
eco0 %00
detailed data 0 %9 %o OO (OX@)
detail © OOOO e

Figure 6.30 The detailed level forms the foundation for the summary level of data.

The coordination of the development efforts is another matter. There must be a
time-sequenced arrangement among the different development groups so that
no one group arrives at a point of needing data that has not yet been gathered
at a lower level.

Multiple Groups Building the
Current Level of Detail

An infrequent set of circumstances occurs when multiple development groups
attempt to build the current level of detail in a data warehouse in a nondistrib-
uted manner. Figure 6.31 illustrates this phenomenon.

As long as the groups that are developing the current level of detail are devel-
oping mutually exclusive sets of data, there is little difficulty. In this case, if the
development groups are working from a common data model and the different
groups’ platforms are compatible, no problems should ensue. Unfortunately,
mutually exclusive data sets are the exception rather than the rule. It is much
more common for the multiple development groups to be designing and popu-
lating some or all of the same data.

A series of problems arise when the groups overlap. The first problem is cost—
in particular, the cost of storage and processing. The volumes of data that are
found at the current detailed level are such that any amount of redundancy
must be questioned, much less wholesale redundancy. The cost of processing
the detail is likewise a major issue.

The second, more insidious issue is the introduction of the spider web into the
DSS environment. With massive amounts of redundant detailed data, it is
almost axiomatic that misinterpretation of data caused by redundancy will
occur, where there is no effective reconcilability. Creating large amounts of

236

CHAPTER 6

development
group A

\ development
«<— groupE

development/ \development

group B group D

development
group C

Figure 6.31 Different development groups that are developing the current level of
detail for the data warehouse.

redundant detailed data is a very undesirable condition for the detailed level of
data in the data warehouse and defeats its purpose. If multiple development
groups will be doing concurrent design and population in the current level of
detail, great care must be taken to ensure that no redundant detailed data is
created.

To ensure that no redundant data is developed, it is necessary to create a data
model that reflects the common detailed data. Figure 6.32 shows that multiple
development groups have combined their interests to create a common data
model. In addition to the currently active development groups, other groups
that will have future requirements but who are not currently in a development
mode may also contribute their requirements. (Of course, if a group knows it
will have future requirements but is unable to articulate them, then those
requirements cannot be factored into the common detailed data model.) The
common detailed data model reflects the collective need among the different
groups for detailed data in the data warehouse.

The data model forms the basis of the design for the data warehouse. Fig-
ure 6.33 shows that the data model will be broken up into many tables as design
progresses, each of which physically becomes part of the warehouse.

Because the data model is broken into multiple physical tables at the moment
of implementation, the development process for the data warehouse can pro-
ceed in an iterative manner. There is no need to build all of the tables at once.
In fact, a good reason to build only a few tables at a time is so that the end user

The Distributed Data Warehouse 237

common
data model Ej
data unique to
Ej development
group D

data unique to
development
group A

data common to
development Ej
Ej groups A, B, C, D
data unique to

data unique to
q development

development

group B group C
Figure 6.32 A data model identifies data that is common to all the development
groups.
common
data model

=3
N
.

customer Ej vendor Ej Ej

. customer
movement sales history survey substitute
history history parts history part
history history

customer shipment Ej Ej Ej
Ej history parts Ej

history customer reject shipment shipment
sales complaint history arrival breakage
pricing history history history
history

Figure 6.33 The data warehouse is physically manifested over multiple physical tables
and databases.

238 CHAPTER 6

feedback can be factored into the modification of the table, if necessary, with a
minimum of fuss. In addition, because the common data model is broken into
multiple tables, adding new tables at a later time to reflect requirements that
are now unknown is not a problem.

Different Requirements
at Different Levels

Normally different groups have unique requirements (see Figure 6.34). These
requirements result in what can be termed “local” current-level detail. The local
data is certainly part of the data warehouse. It is, however, distinctively differ-
ent from the “common” part. The local data has its own data model, usually
much smaller and simpler than the common detailed data model.

There is, of necessity, nonredundancy of data across all of the detailed data.
Figure 6.35 makes this point clear.

Of course, the nonredundancy of the data is restricted to nonkey data. Redun-
dancy exists at the key level because a form of foreign key relationships is used
to relate the different types of data. Figure 6.36 shows the use of foreign keys.

The foreign keys found in the tables shown in Figure 6.36 are quite different
from the classical foreign key relationships that are governed by referential
integrity. Because the data in the data warehouse is gathered by and stored in

Ej iocal current

data unique to level detail common
development data model
group A

O]

data unique to

development

group B data common to
Ej development

Ej groups A, B,C, D

data unique to

development data unique to
group C development
group D

Figure 6.34 Just because data is not common to all development groups does not
mean that it does not belong in the current-level detail of the data ware-
house.

The Distributed Data Warehouse 239

7

customer vendor Ej

customer
movement sales history survey substitute
history history parts history part
history history

customer shipment Ej Ej Ej
Ej history parts Ej

history customer reject shipment shipment
sales complaint history arrival breakage
pricing history history history

history

Figure 6.35 Nonredundancy of nonkey data throughout the many tables that make up
the detailed level of the data warehouse.

terms of snapshots of data, the foreign key relationships that are found are
organized in terms of “artifacts” of relationships. For an in-depth explanation of
artifacts of relationships, refer to the www.billinmon.com Tech Topic on the
subject, found in the “References” section.

An issue that arises is whether to place all of the detailed tables—common and
local—under the same technology, as shown in Figure 6.37. There are many
good arguments for doing so One is that the cost of a single platform versus
multiple platforms is much less. Another is that the cost of support and training
will be less. In fact, about the only argument for multiple platforms for detailed
data is that with multiple platforms, there may not be the need for a single mas-
sively large platform, and as a consequence, the cost of the multiple smaller
platforms may be less than a single larger platform. In any case, many organi-
zations adopt the strategy of a single platform for all their detailed data ware-
house data, and the strategy works well.

Other Types of Detailed Data

Another strategy is to use different platforms for the different types of data
found at the detailed level. Figure 6.38 shows one example of this option. Some
of the local data is on one platform, the common data is on another platform,
and other local data is on yet another. This option is certainly one that is valid,

240

foreign key
foreign key

]

parts
history

Figure 6.36 Foreign keys in the data warehouse environment.

CHAPTER 6
key
.......... key
foreign key| | ...
foreign key
foreign key
key shipment
.......... history
.......... sales
.......... history
foreign key
foreign key
key
vendor - SRR
history foreign key

(]

customer
history

and it often satisfies the different political needs of the organization. With this
option each group doing development can feel that it has some degree of con-
trol of at least its own peculiar needs. Unfortunately, this option has several
major drawbacks. First, multiple technologies must be purchased and sup-
ported. Second, the end user needs to be trained in different technologies. And
finally, the boundaries between the technologies may not be as easy to cross.
Figure 6.39 illustrates this dilemma.

The Distributed Data Warehouse 241

Ej data unique to Ej

- development -
data unique to data unique to
group C
development development

group B group D

-

data unique to dat t
development ata common to

development
A
o / groups A, B, C, D

common technological platform

Figure 6.37 The different types of data in the detailed level of the data warehouse all
on a common platform.

Ej data unique to Ej

- development -
data unique to group C data unique to
development development
group B group D

O]

data unique to
development
group A

data common to
development
groups A, B, C, D

]

platform C

Figure 6.38 In this case, the different parts of the detailed level of the data warehouse
are scattered across different technological platforms.

242 CHAPTER 6

Ej data unique to Ej

- development -
data unique to data unique to
group C
development development
group B group D

]

data unique to
development
group A

data common to
development
groups A,B,C, D

@ <—— data transfer , @

platform A platform C

]
=

Figure 6.39 Data transfer and multiple table queries present special technological
problems.

If there are to be multiple technologies supporting the different levels of detail
in the data warehouse, it will be necessary to cross the boundaries between the
technologies frequently. Software that is designed to access data across differ-
ent technological platforms is available. Some of the problems that remain are
shown in Figure 6.40.

One problem is in the passage of data. If multi-interfaced technology is used for
the passage of small amounts of data, then there is no problem with perfor-
mance. But if multi-interfaced technology is used to pass large amounts of data,
then the software can become a performance bottleneck. Unfortunately, in a
DSS environment it is almost impossible to know how much data will be
accessed by any one request. Some requests access very little data; other
requests access large amounts of data. This problem of resource utilization and
management manifests itself when detailed data resides on multiple platforms.

The Distributed Data Warehouse 243

]

platform B

]

platform A

\

Figure 6.40 Some problems with interfacing different platforms.

]

platform C

/ bulk transfer of data

leaving data after analysis is complete

meta data

-
= D00 LTy

movement
Ej history hsi’:tlsf parts i
Ej y Ej history . ctomer Shipment
customer : history
_ . complaint
history sales pricing vendor history
history history

Figure 6.41 Meta data sits on top of the actual data contents of the data warehouse.

Another related problem is “leaving” detailed data on one side of the data ware-
house after it has been transported from the other side. This casual redeploy-
ment of detailed data has the effect of creating redundancy of data at the
detailed level, something that is not acceptable.

244 CHAPTER 6

Meta Data

In any case, whether detailed data is managed on a single technology or on mul-
tiple technologies, the role of meta data is not diminished. Figure 6.41 shows
that meta data is needed to sit on top of the detailed data warehouse data.

Multiple Platforms for Common Detail Data

One other possibility worth mentioning is using multiple platforms for common
detail of data. Figure 6.42 outlines this scenario.

While such a possibility is certainly an option, however, it is almost never a
good choice. Managing common current detailed data is difficult enough. The
volumes of data found at that level present their own unique problems for man-
agement. Adding the complication of having to cross multiple technological
platforms merely makes life more difficult. Unless there are very unusual miti-
gating circumstances, this option is not recommended.

The only advantage of multiple platforms for the management of common
detail is that this option satisfies immediate political and organizational differ-
ences of opinion.

common data across many
development groups

current detailed data

1 1]

platform A platform B platform C

Figure 6.42 Common detailed data across multiple platforms-a real red flag in all cases.

The Distributed Data Warehouse 245

Summary

Most environments operate from a single centralized data warehouse. But in
some circumstances there can be a distributed data warehouse. The three types
of distributed data warehouses are as follows:

m Data warehouses serving global businesses where there are local opera-
tions and a central operation

m Technologically distributed data warehouses where the volume of data is
such that the data is spread over multiple physical volumes

m Disparate data warehouses that have grown separately through lack of
organizational or political alignment

Each type of distributed data warehouses has its own considerations.

The most difficult aspect of a global data warehouse is the mapping done at the
local level. The mapping must account for conversion, integration, and differ-
ent business practices. The mapping is done iteratively. In many cases, the
global data warehouse will be quite simple because only the corporate data that
participates in business integration will be found in the global data warehouse.
Much of the local data will never be passed to or participate in the loading of
the global data warehouse. Access of global data is done according to the busi-
ness needs of the analyst. As long as the analyst is focusing on a local business
practice, access to global data is an acceptable practice.

The local data warehouses often are housed on different technologies. In addi-
tion, the global data warehouse may be on a different technology than any of
the local data warehouses. The corporate data model acts as the glue that holds
the different local data warehouses together, as far as their intersection at the
global data warehouse is concerned. There may be local data warehouses that
house data unique to and of interest to the local operating site. There may also
be a globally distributed data warehouse. The structure and content of the dis-
tributed global data warehouse are determined centrally, whereas the mapping
of data into the global data warehouse is determined locally.

The coordination and administration of the distributed data warehouse envi-
ronment is much more complex than that of the single-site data warehouse.
Many issues relate to the transport of the data from the local environment to
the global environment, including the following questions:

m What network technology will be used?
m [s the transport of data legal?
m [s there a processing window large enough at the global site?

m What technological conversion must be done?

CHAPTER

Executive Informat
and the Data Ware

was a notion that computation should be available to everyone, not just the
clerical community doing day-to-day transactions. EIS presented the executive
with a set of appealing screens. The idea was that the elegance of the screen
presentation would beguile the executive. While there certainly is merit to the
idea that the world of computation should be open to the executive, the
founders of EIS had no concept of the infrastructure needed to get those num-
bers to the executive. The entire idea behind EIS was presentation of informa-
tion with no real understanding of the infrastructure needed to create that
information in the first place. When the data warehouse first appeared, the EIS
community roundly derided it as a complex discipline that required getting the
hands dirty. EIS was a high-minded, elegant discipline that was above the hard
work and management of complexity involved in a data warehouse. The EIS
community decided that executives had better things to do than worry about
such issues as sources of data, quality of data, currency of data, and so forth.
And so EIS died for lack of an infrastructure. It hardly mattered that the pre-
sentation to the executive was elegant if the numbers being presented were
unbelievable, inaccurate, or just plain unavailable.

Prior to data warehousing, there were executive information systems (EIS). EIS

This chapter first appeared just as EIS was on its way out. As originally written,
this chapter was an attempt to appeal to the EIS community, based on the ratio-
nality of the necessity of an infrastructure. But the wisdom of the EIS com-
munity and its venture capital backers was such that there was to be no

247

(LMY cHAPTER T

relationship between data warehousing and EIS. When it came to the infra-
structure needed to support the grandiose plans of the EIS community, the EIS
community and the venture capital community just didn’t get it.

EIS as it was known in its earliest manifestation has all but disappeared. But the
promises made by EIS are still valuable and real. Consequently EIS has reap-
peared in many forms today—such as OLAP processing and DSS applications
such as customer relationship management (CRM)—and those more modern
forms of EIS are very much related to data warehousing, unlike the earliest
forms of EIS.

EIS—The Promise

EIS is one of the most potent forms of computing. Through EIS, the executive
analyst can pinpoint problems and detect trends that are of vital importance to
management. In a sense, EIS represents one of the most sophisticated applica-
tions of computer technology.

EIS processing is designed to help the executive make decisions. In many
regards, EIS becomes the executive’s window into the corporation. EIS pro-
cessing looks across broad vistas and picks out the aspects that are relevant to
the running of the business. Some of the typical uses of EIS are these:

m Trend analysis and detection

m Key ratio indicator measurement and tracking
Drill-down analysis

Problem monitoring

Competitive analysis

Key performance indicator monitoring

A Simple Example

As an example of how EIS analysis might appear to an executive, consider Fig-
ure 7.1, which shows information on policies offered by an insurance company.
Quarter by quarter, the new life, health, and casualty policy sales are tracked.
The simple graph shown in Figure 7.1 is a good starting point for an executive’s
probing into the state of the business. Once the executive has seen the overall
information, he or she can probe more deeply, as shown by the trend analysis in
Figure 7.2.

In Figure 7.2, the executive has isolated new casualty sales from new life sales
and new health sales. Looking just at new casualty sales, the executive identi-

Executive Information Systems and the Data Warehouse 249

total
policies

executives and EIS

I new health policies

400

300

200

100

500

400

300

200

1st 2nd 3rd 4th 1st 2nd
qtr qtr qtr qtr qtr qtr
new life policies
I new casualty policies
Figure 7.1 A chart typical of EIS processing.
what do executives see in EIS.
~
~ ~ o .
~
~ -~ o
~ ~ o
~
~ ~ ~
~ ~
~ ~
~ -~ ~
| | |
I)
b |

1st 2nd 3rd 4th 1st 2nd
qtr qtr qtr qtr qtr qtr

I new casualty policies

Figure 7.2 Trends—new casualty policy sales are dropping off.

fies a trend: New casualty sales are dropping off each quarter. Having identified
the trend, the executive can investigate why sales are dropping.

250

The EIS analysis alerts the executive as to what the trends are. It is then up to
him or her to discover the underlying reasons for the trends.

The executive is interested in both negative and positive trends. If business is
getting worse, why, and at what rate? What can be done to remedy the situa-
tion? Or, if business is picking up, who and what are responsible for the upturn?
What can be done to accelerate and accentuate the success factors? Can the
success factors be applied to other parts of the business?

Trends are not the only type of analysis accommodated by EIS. Another type of
useful analysis is comparisons. Figure 7.3 shows a comparison that might be
found in an EIS analysis.

Looking at fourth-quarter data, first-quarter data, and second-quarter data in
Figure 7.3, the question can be asked, “Why is there such a difference in sales of
new health policies for the past three quarters?” The EIS processing alerts the
manager to these differences. It is then the job of the EIS analyst to determine
the underlying reasons.

For the manager of a large, diverse enterprise, EIS allows a look at the activities
of the enterprise in many ways. Trying to keep track of a large number of activ-

comparisons
500 / \
400
300
200
100 “
1st 2nd 3rd 4th 1st 2nd
qtr qtr qtr qtr qtr qtr

new life policies
I new health policies
I e casualty policies

Figure 7.3 Why is there an extreme difference in sales of new health policies for the
past three quarters?

Executive Information Systems and the Data Warehouse 251

ities is much more difficult than trying to keep track of just a few activities. In
that sense, EIS can be used to expand the scope of control of a manager.

But trend analysis and comparisons are not the only ways that the manager can
use EIS effectively. Another approach is to “slice-and-dice.” Here the analyst
takes basic information, groups it one way, and analyzes it, then groups it
another way and reanalyzes it. Slicing and dicing allows the manager to have
many different perspectives of the activities that are occurring.

Drill-Down Analysis

To do slicing and dicing, it is necessary to be able to “drill down” on data.
Drilling down refers to the ability to start at a summary number and to break
that summary into a successively finer set of summarizations. By being able to
get at the detail beneath a summary number, the manager can get a feel for what
is happening, especially where the summary number is surprising. Figure 7.4
shows a simple example of drill-down analysis.

In Figure 7.4, the manager has seen second-quarter summary results and wants
to explore them further. The manager then looks at the regions that have con-
tributed to the summary analysis. The figures analyzed are those of the Western
region, the Southeast region, the Northeast region, and the Central region. In
looking at the numbers of each region, the manager decides to look more
closely at the Northeast region’s numbers.

> W Western region New York New York City
E—
Massachusetts Albany
’ Southeast region
Connecticut Schenectady
E—
P vani Long Island
— > || Northeast region ennsylvania
Ithaca
New Jersey . .
_— White Plains
Central region Virginia Poughkeepsie
Maine, RI, Vermont Other
2nd
qtr

Figure 7.4 To make sense of the numbers shown by EIS, the numbers need to support
a drill-down process.

252

The Northeast’s numbers are made up of totals from New York, Massachusetts,
Connecticut, Pennsylvania, New Jersey, Virginia, Maine, Rhode Island, and Ver-
mont. Of these states, the manager then decides to look more closely at the
numbers for New York state. The different cities in New York state that have
outlets are then queried.

In each case, the manager has selected a path of going from summary to detail,
then to a successively lower level. In such a fashion, he or she can determine
where the troublesome results are. Once having identified the anomalies, the
manager then knows where to look more closely.

Yet another important aspect of EIS is the ability to track key performance indi-
cators. Although each corporation has its own set, typical key performance
indicators might be the following:

m Cash on hand

m Customer pipeline

m Length of sales cycle
m Collection time

m New product channel

m Competitive products

Each corporation has several key performance indicators that—in a single mea-
surement—tell an important story about some aspect of the life of the corpora-
tion. On their own, the key performance indicators say a lot about what is going
on in the corporation. Taken over time, the key performance indicators say
even more because they indicate trends.

It is one thing to say that cash on hand is $X. It is even more powerful to say that
two months ago cash on hand was $Z, one month ago cash on hand was $Y, and
this month cash on hand is $X. Looking at key performance indicators over
time is one of the most important things an executive can do, and EIS is ideal
for this purpose.

There is plenty of very sophisticated software that can be used in EIS to present
the results to a manager. The difficult part of EIS is not in the graphical presen-
tation but in discovering and preparing the numbers that go into the graphics,
as seen in Figure 7.5.

EIS is perfectly capable of supporting the drill-down process from the graphical
perspective as long as the data exists in the first place. However, if the data to
analyze does not exist, the drill-down process becomes very tedious and awk-
ward, certainly not something the executive wants to do.

Executive Information Systems and the Data Warehouse 253

EIS software and the
drill-down process

.
==
-

Figure 7.5 EIS software supports the drill-down process as long as the data that is
needed is available and is structured properly.

Supporting the Drill-Down Process

Creating the basis of data on which to perform drill-down analysis, then, is the
major obstacle to successfully implementing the drill-down process, as seen in
Figure 7.6. Indeed, some studies indicate that $9 is spent on drill-down data
preparation for every $1 spent on EIS software and hardware.

Exacerbating the problem is the fact that the executive is constantly changing
his or her mind about what is of interest, as shown in Figure 7.7. On day 1, the
executive is interested in the corporation’s financial activities. The EIS analyst
makes a big effort to develop the underlying data to support EIS interest. Then
on day 2, there is an unexpected production problem, and management’s atten-
tion turns there. The EIS analyst scurries around and tries to gather the data
needed by the executive. On day 3, the EIS analyst is directed to the problems
that have developed in shipping. Each day there is a new focus for the execu-
tive. The EIS analyst simply cannot keep up with the rate at which the execu-
tive changes his or her mind.

Management’s focus in the running of the business shifts with every new prob-
lem or opportunity that arises. There simply is no predictable pattern for what
management will be interested in tomorrow. In turn, the EIS analyst is at the
end of a whip—the wrong end! The EIS analyst is forever in a reactive state.
Furthermore, given the work that is required of the EIS analyst to build the base
of data needed for EIS analysis, the EIS analyst is constantly swamped.

254

—
=
TN Buying and installing
the EIS software is fast
and easy.

Figure 7.6 Creating the base of data on which to do EIS is the hard part.

The problem is that there is no basis of data from which the EIS analyst can eas-
ily work. Each new focus of management requires an entirely different set of data
for the EIS analyst. There is no infrastructure to support the EIS environment.

The Data Warehouse as a Basis for EIS

It is in the EIS environment that the data warehouse operates in its most effec-
tive state. The data warehouse is tailor-made for the needs of the EIS analyst.
Once the data warehouse has been built, the job of the EIS is infinitely easier
than when there is no foundation of data on which the EIS analyst can operate.
Figure 7.8 shows how the data warehouse supports the need for EIS data.

With a data warehouse, the EIS analyst does not have to worry about the fol-
lowing:

m Searching for the definitive source of data

m Creating special extract programs from existing systems

m Dealing with unintegrated data

m Compiling and linking detailed and summary data and the linkage between
the two

m Finding an appropriate time basis of data (i.e., does not have to worry
about finding historical data)

m Management constantly changing its mind about what needs to be looked
at next

In addition, the EIS analyst has a rich supply of summary data available.

Executive Information Systems and the Data Warehouse

day 1

O

Management is interested in financial activities.

O

day 2
There is a
production
problem.
financial
production

Suddenly there is a financial
shipment problem.

Figure 7.7 The constantly changing interests of executives.

255 |

256

data warehouse

f%fj%@ -
\-

the unpredictable nature
ﬁ of management’s focus

Figure 7.8 The data warehouse supports management'’s need for EIS data.

In short, the data warehouse provides the basis of data-the infrastructure—that
the EIS analyst needs to support EIS processing effectively. With a fully popu-
lated data warehouse in place, the EIS analyst can be in a proactive stance—not
an eternally reactive stance—with regard to answering management’s needs.
The EIS analyst’s job changes from that of playing data engineer to that of doing
true analysis, thanks to the data warehouse.

Yet another very important reason why the data warehouse serves the needs of
the world of EIS is this: The data warehouse operates at a low level of granu-
larity. The data warehouse contains—for lack of a better word—atomic data.
The atomic data can be shaped one way, then another. When management has
a new set of needs for information that has never before been encountered in
the corporation, the very detailed data found in the data warehouse sits, wait-
ing to be shaped in a manner suited to management’s needs. Because of the
granular atomic data that resides in the data warehouse, analysis is flexible and
responsive. The detailed data in the data warehouse sits and waits for future
unknown needs for information. This is why the data warehouse turns an orga-
nization from a reactive stance to a proactive stance.

Where to Turn

The EIS analyst can turn to various places in the architecture to get data. In Fig-
ure 7.9, the EIS analyst can go to the individual level of processing, the depart-

Executive Information Systems and the Data Warehouse 257

mental (data mart) level of processing, the lightly summarized level of process-
ing, or the archival/dormant level of data. In addition, there is a normal
sequence or hierarchy in which the EIS analyst goes after data to serve man-
agement’s needs (see Figure 7.9).

There is a very good reason for the order shown, as indicated in Figure 7.10. By
going from the individual level of processing to the archival/dormant level, the
analyst does de facto drill-down analysis. The most summarized data found in
the architected environment is at the individual level. The supporting level of
summary for the individual level is the departmental (data mart) level. Sup-
porting the summaries at the departmental (data mart) level is data at the data
warehouse lightly summarized level. Finally, the light summarization at the data
warehouse level is supported by archival/dormant data. The sequence of sum-
maries just described is precisely what is required to support drill-down EIS
analysis.

Almost by default, the data warehouse lays a path for drill-down analysis. At the
different levels of the data warehouse, and throughout the summarization

0T

oper data dept individual
warehouse (data mart)

departmental Ej
lightly

e [®
@\\ ®
e () S\

EIS

Figure 7.9 Where EIS goes to retrieve data.

258

repetitive
summary
data
departmental
lightly @
summarized
® O 5w
summarized
data
true
archival ‘\
detailed @
data EIS

Figure 7.10 In going from individual levels of processing to true archival data, the drill-
down process is accommodated.

process, data is related by means of a key structure. The key structure itself, or
the derivations of the key structure, allow the data to be related so that drill-
down analysis is easy and natural.

The ways that EIS is supported by the data warehouse are illustrated in Fig-
ure 7.11.

The EIS function uses the following:

m The data warehouse for a readily available supply of summary data

m The structure of the data warehouse to support the drill-down process

m Data warehouse meta data for the DSS analyst to plan how the EIS system
is built

m The historical content of the data warehouse to support the trend analysis
that management wishes to see

m The integrated data found throughout the data warehouse to look at data
across the corporation

Event Mapping

A useful technique in using the data warehouse for EIS processing is event map-
ping. The simplest way to depict event mapping is to start with a simple trend line.

Executive Information Systems and the Data Warehouse 259

©)

(0

(0
Gﬁg
5
3@@
/ (0

/
m
e < down
t /
a /
d
a g
t e
a | dirill history

down integration

o =iy e

Figure 7.11 How EIS is supported by the data warehouse.

Figure 7.12 shows that corporate revenues have varied by month, as expected.
The trend has been calculated from data found in the data warehouse. The
trend of revenues in and of itself is interesting but gives only a superficial view
of what is going on with the corporation. To enhance the view, events are
mapped onto the trend line.

In Figure 7.13, three notable events have been mapped to the corporate revenue
trend line—the introduction of a “spring colors” line of products, the advent of
a sales incentive program, and the introduction of competition. Now the rela-
tionship between corporate revenue and significant events begins to take on a
different perspective. Looking at the diagram in Figure 7.13, one might draw the
conclusion that the introduction of a new line of products and a new incentive
plan have boosted revenue and that competition is starting to have an effect in
the latter part of the year.

For some sorts of events, event mapping is the only way to measure the results.
Some events and activities cannot be measured directly and have to be

corporate revenues

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

Figure 7.12 Simple trends.

corporate revenues

Jan Feb Mar Apr May Jun Jul Aug Sep ’ Oct Nov

introduction of competition’s next
“spring colors” year’s line
options salesmen’s promotion
new incentive
plan

Figure 7.13 Mapping events against a trend line.

measured in a correlative fashion. Cost justification and actual cost benefit can-
not be measured any other way for some types of events.

Misleading conclusions can be drawn, though, by looking at correlative infor-
mation. It often helps to look at more than one set of trends that relate to the
events at hand. As an example, Figure 7.14 shows that corporate revenues are
matched against the consumer confidence index to produce a diagram packed
with even more perspective. Looking at the figure shown, the executive can
make up his or her own mind whether events that have been mapped have
shaped sales.

Executive Information Systems and the Data Warehouse 261

consumer spending index—published monthly by the Bureau of Statistics

corporate revenues

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

introduction of competition’s next
“spring colors” year’s line
options salesmen’s promotion
new incentive
plan

Figure 7.14 Superimposing another trend analysis over the existing one to gain another
perspective.

The data warehouse can store both the internally generated revenue numbers
and the externally generated consumer confidence numbers.

Detailed Data and EIS

Just how much detailed data do you need to run your EIS/DSS environment?
One school of thought says that you need as much detail as possible. By storing
as much data as possible, you can do any kind of analysis that might happen
along. Because the nature of DSS is delving into the unknown, who knows what
detail you will need? To be on the safe side, you'd better keep all the detailed
data you can get your hands on. Furthermore, the more historical detailed data
you can get, the better, because you never can tell how far back you need to go
to do a given DSS analysis.

The logic at the heart of the argument for the storage of massive amounts of
detail for DSS processing is hard to argue with. Intellectually, it must be correct
to say that you need as much detail as possible for DSS and EIS processing. But,

(7N CHAPTERT

in some important ways, the argument suggests Zeno’s paradox. In Zeno’s para-
dox, logic inescapably “proves” that a rabbit can never outrun a turtle as long as
the turtle has a head start on the rabbit. Of course, reality and our own obser-
vations tell us something quite different, warning us that any conclusion based
purely on logic is circumspect.

What, then, is so wrong with keeping all the detail in the world around when
you are building a DSS/EIS environment? There are several things wrong. First,
the amount of money required for both storage and processing costs can go
sky-high. The sheer cost of storing and processing huge amounts of detailed
data prohibits the establishment of an effective EIS/DSS environment. Second,
massive amounts of data form an obstacle to the effective use of analysis tech-
niques. Given very large amounts of data to be processed, important trends and
patterns can hide behind the mask of endless records of detailed data. Third,
with the detail, reuse of previous analysis is not fostered. As long as there is a
massive amount of detail around, DSS analysts are encouraged to create new
analyses from scratch. Such a practice is wasteful and potentially harmful.
When new analysis is not done in quite the same way as older analysis, very
similar analyses are done and ironically conflicting results are obtained.

There is, then, a very real case for storing summary data as well as detailed
data. DSS and EIS processing ought to make as much use of summary data as
they do of detailed data. Summary data is much less voluminous and much eas-
ier to manage than detailed data. From an access and presentation perspective,
summary data is ideal for management. Summary data represents a foundation
on which future analysis can build and for which existing analysis does not
have to be repeated. For these reasons alone, summary data is an integral part
of the DSS/EIS environment.

Keeping Only Summary Data
in the EIS

Some very real problems become evident with keeping just summary data.
First, summary data implies a process—the summary is always created as a
result of the process of calculation. The calculation may be very simple or com-
plex. In any case, there is no such thing as summary data that stands alone—
summary data of necessity stands with its process. To effectively use summary
data, the DSS analyst must have access to and an understanding of the process
that has been used to shape it. As long as DSS and EIS understand this rela-
tionship between process and summary data and as long as EIS and DSS can
profitably use the summary data that has resulted from the process of calcula-
tion, then summary data constitutes an ideal foundation for EIS and DSS. How-
ever, if the analysts that are doing EIS/DSS analysis do not understand that

Executive Information Systems and the Data Warehouse 263

process is intimately related to summary data, the results of the analysis can be
very misleading.

The second problem with summary data is that it may or may not be at the
appropriate level of granularity for the analytical purpose at hand. A balance
needs to be struck between the level of detail and the level of summarization
for EIS and DSS processing.

Summary

There is a very strong affinity between the needs of the EIS analyst and the data
warehouse. The data warehouse explicitly supports all of the EIS analyst’s
needs. With a data warehouse in place, the EIS analyst can be in a proactive
rather than a reactive position.

The data warehouse enables the EIS analyst to deal with the following manage-
ment needs:

Accessing information quickly

Changing their minds (i.e., flexibility)

-

-

m Looking at integrated data

m Analyzing data over a spectrum of time
|

Drilling down

The data warehouse provides an infrastructure on which the EIS analyst can
build.

M

External/Unstructu
and the Data Ware

CHAPTER

ost organizations build their first data warehouse efforts on data whose source
is existing systems (i.e., on data internal to the corporation). In almost every
case, this data can be termed internal, structured data. The data comes inter-
nally from the corporation and has been already shaped into a regularly occur-
ring format.

A whole host of other data is of legitimate use to a corporation that is not gen-
erated from the corporation’s own systems. This class of data is called exter-
nal data and usually enters the corporation in an unstructured, unpredictable
format. Figure 8.1 shows external and unstructured data entering the data
warehouse.

The data warehouse is the ideal place to store external and unstructured data.
If external and unstructured data is not stored in a centrally located place, sev-
eral problems are sure to arise. Figure 8.2 shows that when this type of data
enters the corporation in an undisciplined fashion, the identity of the source of
the data is lost, and there is no coordination whatsoever in the orderly use of
the data.

Typically, when external data is not entered into the data warehouse, it comes
into the corporation by means of the PC. There is nothing wrong per se with
entering data at the PC level. But almost always, the data is entered manually
through a spreadsheet, and absolutely no attempt to is made capture informa-
tion about its source. For example, in Figure 8.2 an analyst sees a report in the

265

266

CHAPTER 8
external unstructured
data data

N
0

existing data
systems warehouse

Figure 8.1 External and unstructured data both belong in the data warehouse.

Business Week

Wall Street Journal /

s

0

Fortune

\

{7

—

= Cmd
Kiplinger g// ﬁj/f/::{ E{ \Ej

é [% \Ej Newsweek
Los Angeles Times)

Figure 8.2 Problems with unstructured data.

External/Unstructured Data and the Data Warehouse 267

Wall Street Journal. The next day, the analyst uses the data from the Wall Street
Journal as part of a report, but the original source of the data is lost as it is
entered into the corporate mainstream of data.

Another difficulty with the laissez-faire approach to external data is that at a
later time it is hard to recall the data. It is entered into the corporation’s sys-
tems, used once, and then it disappears. Even a few weeks later, it is hard to
find and then reprocess the data for further use. This is unfortunate because
much of the data coming from external sources is quite useful over the spec-
trum of time.

The types of data from external sources are many and diverse. Some typical
sources of interesting data include the following:

Wall Street Journal

Business Week

Forbes

Fortune

Industry newsletters

Technology reports

Dun & Bradstreet (now D&B)

Reports generated by consultants specifically for the corporation
Equifax reports

Competitive analysis reports

Marketing comparison and analysis reports

Sales analysis and comparison reports

New product announcements

—
=}

addition, reports internal to the corporation are of interest as well:

Auditor’s quarterly report

Annual report

m Consultant reports

In a sense, the data generated by the Web-based ebusiness environment is
unstructured. It is at such a low level of detail that the data must be reconsti-
tuted before it is useful. This clickstream data then is merely a sophisticated
form of unstructured data.

268 CHAPTER 8

External/Unstructured Data in
the Data Warehouse

Several issues relate to the use and storage of external and unstructured data in
the data warehouse. One problem of unstructured data is the frequency of avail-
ability. Unlike internally appearing data, there is no real fixed pattern of appear-
ance for external data. This irregularity is a problem because constant
monitoring must be set up to ensure that the right data is captured. For some
environments, such as the Internet, monitoring programs can be created and
used to build automated alerts.

The second problem with external data is that it is totally undisciplined. To be
useful, and for placement in the warehouse, a certain amount of reformatting of
external data is needed to transform it into an internally acceptable and usable
form. A common practice is to convert the external data as it enters the data
warehouse environment. External key data is converted to internal key data. Or
external data is passed through simple edits, such as a domain check. In addi-
tion, the data is often restructured so that it is compatible with internal data.

In some cases, the level of granularity of the external data will not match that
of the internal systems of the corporation. For example, suppose a corporation
has individual household information. Now suppose the corporation purchases
a list of income by zip code. The external list says that the average household
income in the zip code is $X. The matching of the internal household informa-
tion is done such that each household in a zip code is assigned the income spec-
ified by the external file. (This means that some households will be assigned an
income level below their means and that other households will be assigned an
income level above their means. But, on average, the household income will be
about right.) Once this arbitrary assignment of income is done, the data can be
sliced and diced into many other patterns.

The third factor that makes external data hard to capture is its unpredictability.
External data may come from practically any source at almost any time.

In addition to external data that might come from a magazine article or a con-
sultant’s report, another whole class of data is just now able to be automated—
unstructured data. The two most common types of unstructured data are image
and voice data. Image data is stored as pictures; voice data is stored digitally
and can be translated back into a voice format. The issues of image data and
voice data stem primarily from technology. The technology to capture and
manipulate image and voice data is not nearly as mature as more conventional
technology. In addition, even when image and voice data can be captured, their
storage requires huge amounts of DASD, and their recall and display or play-
back can be awkward and slow.

External/Unstructured Data and the Data Warehouse 269

Nevertheless, there are many methods to capture and store unstructured infor-
mation. One of the best ways is to place it on some bulk storage medium such
as near-line storage. With near-line storage the unstructured data is still acces-
sible but it doesn’t cost huge amounts of money to store. Of course, extensive
indexing of the unstructured data can be done, and those indexes can be stored
in both disk storage and near-line storage. In such a manner many requests
about the unstructured data can be managed without actually having to go to
the unstructured data. In addition, some requests can be handled entirely inside
the index of the unstructured data itself. Also, if an extensive index of unstruc-
tured data is created, the unstructured data can be tied to structured data. The
index can then be used to determine what unstructured data to bring to disk
storage. In this case, only unstructured data that is prequalified and preselected
would be brought to disk storage.

Another technique for handling unstructured data that is sometimes effective is
to create two stores of unstructured data. One store contains all of the unstruc-
tured data, and another, much smaller store contains only a subset. The subset
of unstructured data can be accessed and analyzed before the large, complete
unstructured store is analyzed. When this is done, the potential to save on pro-
cessing is huge.

The unstructured data becomes an adjunct to the data warehouse. The unstruc-
tured data is connected to the data warehouse by means of an index, and the
unstructured data is brought into the data warehouse only when there is a spe-
cific, prequalified request for it.

Meta Data and External Data

As we've discussed, meta data is an important component of the data ware-
house in any scenario, but it takes on an entirely different dimension in the face
of storing and managing external and unstructured data. Figure 8.3 shows the
role of meta data.

Meta data is vital because through it external data is registered, accessed, and
controlled in the data warehouse environment. The importance of meta data is
best understood by noting what it typically encompasses:

m Document ID

m Date of entry into the warehouse
m Description of the document

m Source of the document

m Date of source of the document
|

Classification of the document

270

Index words

-

m Purge date
m Physical location reference
|

Length of the document

m Related references

It is through the meta data that a manager determines much information about
the external data. In many instances, the manager will look at the meta data
without ever looking at the source document. Scanning meta data eliminates
much work because it filters out documents that are not relevant or are out-of-
date. Therefore, properly built and maintained meta data is absolutely essential
to the operation of the data warehouse-particularly with regard to external
data.

In association with meta data is another type of data-notification data. Shown
in Figure 8.4, notification data is merely a file created for users of the system
that indicates classifications of data interesting to the users. When data is
entered into the data warehouse and into the meta data, a check is made to see
who is interested in it. The person is then notified that the external data has
been captured.

unstructured external
data data

Ej metadata:
\ e document ID

meta data e data of entry
e description
source
data classification(s)
warehouse index words

physical location reference
length

L]
L]
[]
* purge date
L]
¢ related references

Figure 8.3 Meta data takes on a new role in the face of external and unstructured data.

External/Unstructured Data and the Data Warehouse 271

unstructured external
data data

Ej\ /Ej file

meta data

data
warehouse

Figure 8.4 Another nice feature of external data and meta data is the ability to create a
tailored notification file.

Storing External/Unstructured Data

External data and unstructured data can actually be stored in the data ware-
house if it is convenient and cost-effective to do so. But in many cases it will not
be possible or economical to store all external data in the data warehouse.
Instead, an entry is made in the meta data of the warehouse describing where
the actual body of external data can be found. The external data is then stored
elsewhere, where it is convenient, as shown in Figure 8.5. External data may be
stored in a filing cabinet, on fiche, on magnetic tape, and so on.

However it is done, storing external data and unstructured data requires con-
siderable resources. By associating external data and unstructured data with a
data warehouse, the external data and the unstructured data become available
for all parts of the organization, such as finance, marketing, accounting, sales,
engineering, and so forth. The implication is that once the data is captured and
managed centrally, the organization has to undergo the expense of dealing with
such data only once. But when external data and unstructured data is not asso-
ciated with a data warehouse, then there is the very real chance that different

272

CHAPTER 8

unstructured external
data data

meta data Ej
data
warehouse Q Q

Q0

b
jH

H-P magnetic
fiche - tape
Q-Z
filing
cabinet

Figure 8.5 In every case, external/unstructured data is registered with meta data, but
the actual data may or may not be stored in the data warehouse based on
the size of the data and the probability of access.

parts of the organization will capture and store the same data. This duplication
of effort and resources is very wasteful and carries with it a very high price tag.

Different Components of
External/Unstructured Data

One of the important design considerations of external/unstructured data is
that it often contains many different components, some of which are of more
use than others. As an example, suppose the complete manufacturing history
of a product is purchased. Certain aspects of production are very important,
such as the length of time from first to final assembly. Another important pro-
duction measurement is total cost of unassembled raw goods. But many other
unimportant pieces of information accompany the manufacturing informa-

External/Unstructured Data and the Data Warehouse

273

tion, such as actual date of production, shipment specification, and tempera-

ture at production.

To manage the data, an experienced DSS analyst or industrial engineer needs to
determine what are the most important units of data. Then those units are
stored in an online, easy-to-get-to location. There is efficiency of storage and
efficiency of access. The remaining, less important detail is not discarded but is
placed in a bulk storage location. In such a manner, large amounts of unstruc-

tured data can be efficiently stored and managed.

Modeling and External/Unstructured Data

What is the role of the data model and external data? Figure 8.6 reflects the
dilemma. The normal role of the data model is the shaping of the environment,
usually in terms of design. But external data and unstructured data are not mal-
leable to any extent at all. Therefore, it appears that there is very little relation-
ship between the data model and external data. About the best that can be done
is to note the differences between the data model and external data as far as the
interpretation of key phrases and words are concerned. Attempting to use the
data model for any serious reshaping of the external or unstructured data is a

TN

data data

unstructured external

data
model

data
warehouse

Figure 8.6 There is only a faint resemblance of external data/unstructured data to a
data model. Furthermore, nothing can be done about reshaping external

data and unstructured data.

274 CHAPTER 8

mistake. The most that can be done is to create subsets of the data that are com-
patible with the existing internal data.

Secondary Reports

Not only can primary data be put in the data warehouse, but when data is repet-
itive in nature, secondary reports can be created from the detailed data over
time. For example, take the month-end Dow Jones average report shown in Fig-
ure 8.7.

In the figure, Dow Jones information comes into the data warehouse environ-
ment daily. The daily information is useful, but of even more interest are the
long-term trends that are formed. At the end of the month, the Dow Jones aver-
age is shuffled off into a secondary report. The secondary report then becomes
part of the store of external data contained in the data warehouse.

Dow Jones Industrial Average

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

Figure 8.7 Creating a summary report from daily or monthly recurring information.

External/Unstructured Data and the Data Warehouse 275

Archiving External Data

Every piece of information—external or otherwise—has a useful lifetime. Once
past that lifetime, it is not economical to keep the information. An essential part
of managing external data is deciding what the useful lifetime of the data is.
Even after this is determined, there remains the issue of whether the data
should be discarded or put into archives. As a rule, external data may be
removed from the data warehouse and placed on less expensive storage. The
meta data reference to the external data is updated to reflect the new storage
place and is left in the meta data store. The cost of an entry into the meta data
store is so low that once put there, it is best left there.

Comparing Internal Data to External Data

One of the most useful things to do with external data is to compare it to inter-
nal data over a period of time. The comparison allows management a unique
perspective. For instance, being able to contrast immediate and personal activ-
ities and trends against global activities and trends allows an executive to have
insights that simply are not possible elsewhere. Figure 8.8 shows such a
comparison.

When the comparison between external and internal data is made, the assump-
tion is that the comparison is made on a common key. Any other assumption
and the comparison between external and internal data loses much of its use-
fulness. Unfortunately, actually achieving a common-key basis between exter-
nal and internal data is not easy.

To understand the difficulty, consider two cases. In one case, the commodity
being sold is a large, expensive item, such as a car or a television set. For a
meaningful comparison, sale by actual outlet needs to be measured. The actual

industry sales
(in billions) \

corporate sales
(in millions) 1990 1991 1992 1993 1994 1995 1996

Figure 8.8 External data compared to internal data can be very elucidating.

276 CHAPTER 8

sales by dealer is the basis for comparison. Unfortunately, the key structure
used for dealers by the external source of data is not the same key structure
used by internal systems. Either the external source must be converted to the
key structure of the internal source or vice versa. Such a conversion is a non-
trivial task.

Now consider the measurement of sales of a high-volume, low-cost item such
as colas. The internal sales figures of the company reflect the sale of colas. But
the external sales data has mixed the sales of colas with the sales of other bev-
erages such as beer. Making a comparison between the two types of sales data
will lead to some very misleading conclusions. For a meaningful comparison,
there needs to be a “cleansing” of the external sales data to include only colas.
In fact, if at all possible, colas only of the variety produced and sold by the bot-
tler should be included. Not only should beer be removed from the external
sales data, but noncompeting cola types should be removed as well.

Summary

The data warehouse is capable of holding much more than internal, structured
data. There is much information relevant to the running of the company that
comes from sources outside the company.

External data is captured, and information about the meta data is stored in the
data warehouse meta data. External data often undergoes significant editing
and transformation as the data is moved from the external environment to the
data warehouse environment. The meta data that describes the external data
and the unstructured data serves as an executive index to information. Much
can be done with the index information, such as placing it in both disk storage
and near-line storage, creating a link between the data warehouse and unstruc-
tured data, doing internal index processing, and so forth. In addition, a “notifi-
cation” service is often provided whenever a new entry is made into the data
warehouse.

External and unstructured data may or may not actually be stored in the data
warehouse. By associating external and unstructured data with a data ware-
house, the organization precludes the need to store the external and unstruc-
tured data in multiple places. Because of the bulk of data that is associated with
unstructured data, it is best to store at least part of the unstructured data on a
bulk storage medium such as near-line storage.

CHAPTER

Migration to the
Architected Enviro

to failure in today’s world. There simply is too much risk and too long a period
to wait until there is a payback. In addition, trying to freeze changes to consider
any path that is revolutionary, rather than evolutionary is unrealistic.

g ny architecture that must be implemented all at once, in a big bang, is doomed

It is very good news indeed that migrating to the architected data warehouse
environment is a step-by-step activity that is accomplished one finite deliver-
able at a time. The most successful implementations of the architected envi-
ronment have been those in which the data warehouse has been built one
iteration at a time. In doing so, the data warehouse can be built for a minimum
of employee resources and with absolutely minimal disruption to the existing
applications environment. Both the size and the speed of iterative development
are important. Results must be delivered quickly.

In this chapter, a generic migration plan and a methodology for development
are discussed. The methodology is described in detail in the appendix. The
migration plan has been successfully followed by a wide number of companies;
it is anything but a fanciful flight. The approach has been gleaned from the
experiences of a number of companies. Of course, each company will have its
own diversions and permutations. But the migration plan and approach have
met with enough success in enough diverse companies to merit the confidence
of the general-purpose developer.

277

278 CHAPTER 9

A Migration Plan

The beginning point for the migration plan is a corporate data model. This
model represents the information needs of the corporation. Keep in mind that
it represents what the corporation needs, not necessarily what it currently has.
In addition, it is built with no consideration of technology.

The corporate data model may be built internally, or it may have been generated
from a generic data model. The corporate data model needs to identify (at a
minimum!) the following:

m Major subjects of the corporation
m Definition of the major subjects of the corporation
m Relationships between the major subjects

m Groupings of keys and attributes that more fully represent the major sub-
jects, including the following:

m Attributes of the major subjects

m Keys of the major subjects

m Repeating groups of keys and attributes
m Connectors between major subject areas

m Subtyping relationships

In theory, it is possible to build the architected data-warehouse-centric envi-
ronment without a data model; however, in practice, it is never done. Trying to
build such an environment without a data model is analogous to trying to navi-
gate without a map. It can be done, but like a person who has never been out-
side of Texas landing at New York’s La Guardia airport and driving to midtown
Manhattan with no map or instructions, it is very prone to trial and error.

Figure 9.1 shows that building or otherwise acquiring a data model is the start-
ing point for the migration process. As a rule, the corporate data model identi-
fies corporate information at a high level. From the corporate data model a
lower-level model is built. The lower-level model identifies details that have
been glossed over by the corporate data model. This midlevel model is built
from the subject areas that have been identified in the corporate data model,t
one subject area at a time. It is not built on an all-at-once basis because such
doing so takes too long.

Both the corporate data model and its associated midlevel model focus only on
the atomic data of the corporation. No attempt is made to include derived data
or DSS data in these models. Instead, derived data and DSS are deliberately
excluded from the corporate data model and the midlevel models.

Migration to the Architected Environment 279

0
g Ej E?@ model
- @@ 5
-

existing
systems
environment

|
Ej i define the system of record

@ data

model

“Best” data to represent the data model:

e most timely

* most accurate

e most complete

¢ nearest to the external source
e most structurally compatible

Figure 9.1 Migration to the architected environment.

Some reasons for excluding derived data and DSS data from the corporate data
model and the midlevel model include the following:

m Derived data and DSS data change frequently.

m These forms of data are created from atomic data.
m They frequently are deleted altogether.
|

There are many variations in the creation of derived data and DSS data.

280

CHAPTER 9

Because derived data and DSS data are excluded from the corporate data
model and the midlevel model, the data model does not take long to build.

After the corporate data model and the midlevel models are in place, the next
activity is defining the system of record. The system of record is defined in
terms of the corporation’s existing systems. Usually, these older legacy systems
are affectionately known as the “mess.”

The system of record is nothing more than the identification of the “best” data
the corporation has that resides in the legacy operational or in the Web-based
ebusiness environment. The data model is used as a benchmark for determin-
ing what the best data is. In other words, the data architect starts with the data
model and asks what data is in hand that best fulfills the data requirements
identified in the data model. It is understood that the fit will be less than per-
fect. In some cases, there will be no data in the existing systems environment or
the Web-based ebusiness environment that exemplifies the data in the data
model. In other cases, many sources of data in the existing systems environ-
ment contribute data to the systems of record, each under different circum-
stances.

The “best” source of existing data or data found in the Web-based ebusiness
environment is determined by the following criteria:

m What data in the existing systems or Web-based ebusiness environment is
the most complete?

m What data in the existing systems or Web-based ebusiness environment is
the most timely?

m What data in the existing systems or Web-based ebusiness environment is
the most accurate?

m What data in the existing systems or Web-based ebusiness environment is
the closest to the source of entry into the existing systems or Web-based
ebusiness environment?

m What data in the existing systems or Web-based ebusiness environment
conforms the most closely to the structure of the data model? In terms of
keys? In terms of attributes? In terms of groupings of data attributes?

Using the data model and the criteria described here, the analyst defines the sys-
tem of record. The system of record then becomes the definition of the source
data for the data warehouse environment. Once this is defined, the designer then
asks what are the technological challenges in bringing the system-of-record data
into the data warehouse. A short list of the technological challenges includes
the following:

m A change in DBMS. The system of record is in one DBMS, and the data
warehouse is in another DBMS.

Migration to the Architected Environment 281

m A change in operating systems. The system of record is in one operating
system, and the data warehouse is in another operating system,

m The need to merge data from different DBMSs and operating systems. The
system of record spans more than one DBMS and/or operating system.
System-of-record data must be pulled from multiple DBMSs and multiple
operating systems and must be merged in a meaningful way.

m The capture of the Web-based data in the Web logs. Once captured, how
can the data be freed for use within the data warehouse?

m A change in basic data formats. Data in one environment is stored in
ASCII, and data in the data warehouse is stored in EBCDIC, and so forth.

Another important technological issue that sometimes must be addressed is the
volume of data. In some cases, huge volumes of data will be generated in the
legacy environment. Specialized techniques may be needed to enter them into
the data warehouse. For example, clickstream data found in the Web logs needs
to be preprocessed before it can be used effectively in the data warehouse
environment.

There are other issues. In some cases, the data flowing into the data warehouse
must be cleansed. In other cases, the data must be summarized. A host of issues
relate to the mechanics of the bringing of data from the legacy environment into
the data warehouse environment.

After the system of record is defined and the technological challenges in bring-
ing the data into the data warehouse are identified, the next step is to design the
data warehouse, as shown in Figure 9.2.

If the data modeling activity has been done properly, the design of the data
warehouse is fairly simple. Only a few elements of the corporate data model
and the midlevel model need to be changed to turn the data model into a data
warehouse design. Principally, the following needs to be done:

m An element of time needs to be added to the key structure if one is not
already present.

m All purely operational data needs to be eliminated.
m Referential integrity relationships need to be turned into artifacts.

m Derived data that is frequently needed is added to the design.

The structure of the data needs to be altered when appropriate for the following:
m Adding arrays of data

m Adding data redundantly

m Further separating data under the right conditions

|

Merging tables when appropriate

282

CHAPTER 9

existing
systems
environment

®
ig
u .
Ej Ej design the data warehouse

]
Ej@

existing
systems
environment

5.

Al
@@%\

design the data warehouse

®

extract
integrate
change time basis of data
condense data
efficiently scan data

Figure 9.2 Migration to the architected environment.

Stability analysis of the data needs to be done. In stability analysis, data whose
content has a propensity for change is isolated from data whose content is very
stable. For example, a bank account balance usually changes its content very
frequently-as much as three or four times a day. But a customer address
changes very slowly-every three or four years or so. Because of the very dis-
parate stability of bank account balance and customer address, these elements
of data need to be separated into different physical constructs.

Migration to the Architected Environment 283

The data warehouse, once designed, is organized by subject area. Typical sub-
ject areas are as follows:

m (Customer
Product
Sale
Account
Activity

Shipment

Within the subject area there will be many separate tables, each of which is con-
nected by a common key. All the customer tables will have CUSTOMER as a
key, for example.

One of the important considerations made at this point in the design of the data
warehouse is the number of occurrences of data. Data that will have very many
occurrences will have a different set of design considerations than data that has
very few occurrences. Typically, data that is voluminous will be summarized,
aggregated, or partitioned (or all of the above). Sometimes profile records are
created for voluminous data occurrences.

In the same vein, data that arrives at the data warehouse quickly (which is usu-
ally, but not always, associated with data that is voluminous) must be consid-
ered as well. In some cases, the arrival rate of data is such that special
considerations must be made to handle the influx of data. Typical design con-
siderations include staging the data, parallelization of the load stream, delayed
indexing, and so forth.

After the data warehouse is designed, the next step is to design and build the
interfaces between the system of record-in the operational environment-and
the data warehouses. The interfaces populate the data warehouse on a regular
basis.

At first glance, the interfaces appear to be merely an extract process, and it is
true that extract processing does occur. But many more activities occur at the
point of interface as well:

m Integration of data from the operational, application-oriented environment
m Alteration of the time basis of data

m Condensation of data
|

Efficient scanning of the existing systems environment

Most of these issues have been discussed elsewhere in this book.

Note that the vast majority of development resources required to build a data
warehouse are consumed at this point. It is not unusual for 80 percent of the

284

effort required to build a data warehouse to be spent here. In laying out the
development activities for building a data warehouse, most developers overes-
timate the time required for other activities and underestimate the time
required for designing and building the operational-to-data-warehouse inter-
face. In addition to requiring resources for the initial building of the interface
into the data warehouse, the ongoing maintenance of the interfaces must be
considered. Fortunately, ETL software is available to help build and maintain
this interface.

Once the interface programs are designed and built, the next activity is to start
the population of the first subject area, as shown in Figure 9.3. The population

existing

systems @
environment
(] =

Start to populate the

Ej [j i first subject area.

@%\

=

systems
environment

Continue population
and encourage

data mart departmental
usage.

WARNING: If you wait for the
existing systems environment to
get “cleaned up” before building
the data warehouse, you will
NEVER build a data warehouse.

Figure 9.3 Iterative migration to the architected environment.

Migration to the Architected Environment 285

is conceptually very simple. The first of the data is read in the legacy environ-
ment; then it is captured and transported to the data warehouse environment.
Once in the data warehouse environment the data is loaded, directories are
updated, meta data is created, and indexes are made. The first iteration of the
data is now ready for analysis in the data warehouse.

There are many good reasons to populate only a fraction of the data needed in
a data warehouse at this point. Changes to the data likely will need to be made.
Populating only a small amount of data means that changes can be made easily
and quickly. Populating a large amount of data greatly diminishes the flexibility
of the data warehouse. Once the end user has had a chance to look at the data
(even just a sample of the data) and give feedback to the data architect, then it
is safe to populate large volumes of data. But before the end user has a chance
to experiment with the data and to probe it, it is not safe to populate large vol-
umes of data.

End users operate in a mode that can be called the “discovery mode.” End users
don’t know what their requirements are until they see what the possibilities are.
Initially populating large amounts of data into the data warehouse is dangerous-
it is a sure thing that the data will change once populated. Jon Geiger says that
the mode of building the data warehouse is “build it wrong the first time.” This
tongue-in-cheek assessment has a strong element of truth in it.

The population and feedback processes continue for a long period (indefi-
nitely). In addition, the data in the warehouse continues to be changed. Of
course, over time, as the data becomes stable, it changes less and less.

A word of caution: If you wait for existing systems to be cleaned up, you will
never build a data warehouse. The issues and activities of the existing systems’
operational environment must be independent of the issues and activities of the
data warehouse environment. One train of thought says, “Don’t build the data
warehouse until the operational environment is cleaned up.” This way of think-
ing may be theoretically appealing, but in truth it is not practical at all.

One observation worthwhile at this point relates to the frequency of refresh-
ment of data into the data warehouse. As a rule, data warehouse data should be
refreshed no more frequently than every 24 hours. By making sure that there is
at least a 24-hour time delay in the loading of data, the data warehouse devel-
oper minimizes the temptation to turn the data warehouse into an operational
environment. By strictly enforcing this lag of time, the data warehouse serves
the DSS needs of the company, not the operational needs. Most operational
processing depends on data being accurate as of the moment of access (i.e.,
current-value data). By ensuring that there is a 24-hour delay (at the least), the
data warehouse developer adds an important ingredient that maximizes the
chances for success.

286 CHAPTER 9

In some cases, the lag of time can be much longer than 24 hours. If the data is
not needed in the environment beyond the data warehouse, then it may make
sense not to move the data into the data warehouse on a weekly, monthly, or
even quarterly basis. Letting the data sit in the operational environment allows
it to settle. If adjustments need to be made, then they can be made there with
no impact on the data warehouse if the data has not already been moved to the
warehouse environment.

The Feedback Loop

At the heart of success in the long-term development of the data warehouse is
the feedback loop between the data architect and the DSS analyst, shown in
Figure 9.4. Here the data warehouse is populated from existing systems. The
DSS analyst uses the data warehouse as a basis for analysis. On finding new
opportunities, the DSS analyst conveys those requirements to the data archi-
tect, who makes the appropriate adjustments. The data architect may add data,
delete data, alter data, and so forth based on the recommendations of the end
user who has touched the data warehouse.

Ej data warehouse

DSS analyst

existing systems environment %

data architect

Figure 9.4 The crucial feedback loop between DSS analyst and data architect.

Migration to the Architected Environment 287

A few observations about this feedback loop are of vital importance to the suc-
cess of the data warehouse environment:

m The DSS analyst operates—quite legitimately—in a “give me what I want,
then I can tell you what I really want” mode. Trying to get requirements
from the DSS analyst before he or she knows what the possibilities are is
an impossibility.

m The shorter the cycle of the feedback loop, the more successful the ware-
house effort. Once the DSS analyst makes a good case for changes to the
data warehouse, those changes need to be implemented as soon as possi-
ble.

m The larger the volume of data that has to be changed, the longer the feed-
back loop takes. It is much easier to change 10 gigabytes of data than 100
gigabytes of data.

Failing to implement the feedback loop greatly short-circuits the probability of
success in the data warehouse environment.

Strategic Considerations

Figure 9.5 shows that the path of activities that have been described addresses
the DSS needs of the organization. The data warehouse environment is
designed and built for the purpose of supporting the DSS needs of the organi-
zation, but there are needs other than DSS needs.

Figure 9.6 shows that the corporation has operational needs as well. In addi-
tion, the data warehouse sits at the hub of many other architectural entities,
each of which depends on the data warehouse for data.

In Figure 9.6, the operational world is shown as being in a state of chaos. There
is much unintegrated data and the data and systems are so old and so patched
they cannot be maintained. In addition, the requirements that originally shaped
the operational applications have changed into an almost unrecognizable form.

The migration plan that has been discussed is solely for the construction of the
data warehouse. Isn’t there an opportunity to rectify some or much of the oper-
ational “mess” at the same time that the data warehouse is being built? The
answer is that, to some extent, the migration plan that has been described pre-
sents an opportunity to rebuild at least some of the less than aesthetically pleas-
ing aspects of the operational environment.

One approach—which is on a track independent of the migration to the data
warehouse environment—is to use the data model as a guideline and make a
case to management that major changes need to be made to the operational

288

CHAPTER 9

data model

e

existing
systems
/@

[
SCH
/’@ data mart

-

5 5 e et

35 = e
Ej systems

O/Ej

system of
record data —
warehouse data warehouse
interface
programs
Figure 9.5 The first major path to be followed is DSS.
data model

e

existing
systems

i @ Ej DSS .
Ej Ej/@ data mart

Ej @ . departmental/
[j Ej individual
@ data systems
warehouse

system of agents of change:
record * aging of systems
* aging of technology
e organizational upheaval
e drastically changed requirements

operational

Figure 9.6 To be successful, the data architect should wait for agents of change to
become compelling and ally the efforts toward the architected environment
with the appropriate agents.

Migration to the Architected Environment 289

environment. The industry track record of this approach is dismal. The amount
of effort, the amount of resources, and the disruption to the end user in under-
taking a massive rewrite and restructuring of operational data and systems is
such that management seldom supports such an effort with the needed level of
commitment and resources.

A better ploy is to coordinate the effort to rebuild operational systems with
what are termed the “agents of change”:

m The aging of systems
m The radical changing of technology
m (Organizational upheaval

m Massive business changes

When management faces the effects of the agents of change, there is no ques-
tion that changes will have to be made—the only question is how soon and at
what expense. The data architect allies the agents of change with the notion of
an architecture and presents management with an irresistible argument for the
purpose of restructuring operational processing.

The steps the data architect takes to restructure the operational environment—
which is an activity independent of the building of the data warehouse—are
shown in Figure 9.7.

First a “delta” list is created. The delta list is an assessment of the differences
between the operational environment and the environment depicted by the
data model. The delta list is simple, with very little elaboration.

The next step is the impact analysis. At this point an assessment is made of the
impact of each item on the delta list. Some items may have a serious impact;
other items may have a negligible impact on the running of the company.

Next, the resource estimate is created. This estimate is for the determination of
how many resources will be required to “fix” the delta list item.

Finally, all the preceding are packaged in a report that goes to information sys-
tems management. Management then makes a decision as to what work should
proceed, at what pace, and so forth. The decision is made in light of all the pri-
orities of the corporation.

Methodology and Migration

In the appendix of this book, a methodology for building a data warehouse is
described. The methodology is actually a much larger one in scope in that it not
only contains information about how to build a data warehouse but also

290

CHAPTER 9
existing
systems

=560 e

]
Ej EEjj Ej 1. delta list:
O

how the data model differs from
existing systems

system of 2. impact analysis:
record how each delta item makes
a difference

3. resource estimate:
how much will it cost to “fix”
the delta item

4. report to management:
¢ what needs to be fixed
¢ the estimate of resources required
e the order of work
e the disruption analysis

Figure 9.7 The first steps in creating the operational cleanup plan.

describes how to use the data warehouse. In addition, the classical activities of
operational development are included to form what can be termed a data-
driven methodology.

The methodology described differs from the migration path in several ways.
The migration path describes general activities dynamically. The methodology
describes specific activities, deliverables from those activities, and the order
of the activities. The iterative dynamics of creating a warehouse are not
described, though. In other words, the migration plan describes a sketchy plan
in three dimensions, while the methodology describes a detailed plan in one
dimension. Together they form a complete picture of what is required to build
the data warehouse.

Migration to the Architected Environment 291

A Data-Driven Development Methodology

Development methodologies are quite appealing to the intellect. After all,
methodology directs the developer down a rational path, pointing out what
needs to be done, in what order, and how long the activity should take. How-
ever, as attractive as the notion of a methodology is, the industry track record
has not been good. Across the board, the enthusiasm for methodologies (data
warehouse or any other) has met with disappointment on implementation.

Why have methodologies been disappointing? The reasons are many:

m Methodologies generally show a flat, linear flow of activities. In fact,
almost any methodology requires execution in terms of iterations. In other
words, it is absolutely normal to execute two or three steps, stop, and
repeat all or part of those steps again. Methodologies usually don’t recog-
nize the need to revisit one or more activities. In the case of the data ware-
house, this lack of support for iterations makes a methodology a very
questionable subject.

m Methodologies usually show activities as occurring once and only once.
Indeed, while some activities need to be done (successfully) only once,
others are done repeatedly for different cases (which is a different case
than reiteration for refinement).

m Methodologies usually describe a prescribed set of activities to be done.
Often, some of the activities don’t need to be done at all, other activities
need to be done that are not shown as part of the methodology, and so
forth.

m Methodologies often tell how to do something, not what needs to be done.
In describing how to do something, the effectiveness of the methodology
becomes mired in detail and in special cases.

m Methodologies often do not distinguish between the sizes of the systems
being developed under the methodology. Some systems are so small that a
rigorous methodology makes no sense. Some systems are just the right size
for a methodology. Other systems are so large that their sheer size and
complexity will overwhelm the methodology.

m Methodologies often mix project management concerns with design/devel-
opment activities to be done. Usually, project management activities
should be kept separate from methodological concerns.

292

CHAPTER 9

m Methodologies often do not make the distinction between operational and
DSS processing. The system development life cycles for operational and
DSS processing are diametrically opposed in many ways. A methodology
must distinguish between operational and DSS processing and develop-
ment in order to be successful.

m Methodologies often do not include checkpoints and stopping places in the
case of failure. “What is the next step if the previous step has not been
done properly?” is usually not a standard part of a methodology.

m Methodologies are often sold as solutions, not tools. When a methodology
is sold as a solution, inevitably it is asked to replace good judgment and
common sense, and this is always a mistake.

m Methodologies often generate a lot of paper and very little design. Design
and development activities are not legitimately replaced by paper.

Methodologies can be very complex, anticipating every possibility that may
ever happen. Despite these drawbacks, there still is some general appeal for
methodologies. A general-purpose methodology—applicable to the data-driven
environment—is described in the appendix, with full recognition of the pitfalls
and track record of methodologies. The data-driven methodology that is out-
lined owes much to its early predecessors. As such, for a much fuller explana-
tion of the intricacies and techniques described in the methodology, refer to the
books listed in the references in the back of this book.

One of the salient aspects of a data-driven methodology is that it builds on pre-
vious efforts—utilizing both code and processes that have already been devel-
oped. The only way that development on previous efforts can be achieved is
through the recognition of commonality. Before the developer strikes the first
line of code or designs the first database, he or she needs to know what already
exists and how it affects the development process. A conscious effort must be
made to use what is already in place and not reinvent the wheel. That is one of
the essences of data-driven development.

The data warehouse environment is built under what is best termed an iterative
development approach. In this approach a small part of the system is built to
completion, then another small part is completed, and so forth. That develop-
ment proceeds down the same path repeatedly makes the approach appear to
be constantly recycling itself. The constant recycling leads to the term “spiral”
development.

The spiral approach to development is distinct from the classical approach,
which can be called the “waterfall” approach. In this approach all of one activ-
ity is completed before the next activity can begin, and the results of one activ-
ity feed another. Requirements gathering is done to completion before analysis
and synthesization commence. Analysis and synthesization are done to com-
pletion before design begins. The results of analysis and synthesization feed the

Migration to the Architected Environment 293

process of design, and so forth. The net result of the waterfall approach is that
huge amounts of time are spent making any one step complete, causing the
development process to move at a glacial speed.

Figure 9.8 shows the differences between the waterfall approach and the spiral
approach.

Because the spiral development process is driven by a data model, it is often
said to be data driven.

Data-Driven Methodology

What makes a methodology data driven? How is a data-driven methodology any
different from any other methodology? There are at least two distinguishing
characteristics of a data-driven methodology.

A data-driven methodology does not take an application-by-application approach
to the development of systems. Instead, code and data that have been built pre-
viously are built on, rather than built around. To build on previous efforts, the
commonality of data and processing must be recognized. Once recognized, data
is built on if it already exists; if no data exists, data is constructed so that future
development may built on it. The key to the recognition of commonality is the
data model.

There is an emphasis on the central store of data—the data warehouse—as the
basis for DSS processing, recognizing that DSS processing has a very different
development life cycle than operational systems.

a classical waterfal development
approach to development

"
—(:\/ </

an iterative, or "spiral," approach to
development

Figure 9.8 The differences between development approaches, from a high level.

294 CHAPTER 9

System Development Life Cycles

Fundamentally, shaping the data-driven development methodology is the pro-
found difference in the system development life cycles of operational and DSS
systems. Operational development is shaped around a development life cycle
that begins with requirements and ends with code. DSS processing begins with
data and ends with requirements.

A Philosophical Observation

In some regards, the best example of methodology is the Boy Scout and Girl
Scout merit badge system, which is used to determine when a scout is ready to
pass to the next rank. It applies to both country- and city-dwelling boys and
girls, the athletically inclined and the intellectually inclined, and to all geo-
graphical areas. In short, the merit badge system is a uniform methodology for
the measurement of accomplishment that has stood the test of time.

Is there is any secret to the merit badge methodology? If so, it is this: The merit
badge methodology does not prescribe how any activity is to be accomplished;
instead, it merely describes what is to be done with parameters for the mea-
surement of the achievement. The how-to that is required is left up to the Boy
Scout or Girl Scout.

Philosophically, the approach to methodology described in the appendix of this
book takes the same perspective as the merit badge system. The results of what
must be accomplished and, generally speaking, the order in which things must
be done is described. How the results required are to be achieved is left entirely
up to the developer.

Operational Development/DSS Development

The data-driven methodology will be presented in three parts: METH 1, METH
2, and METH 3. The first part of the methodology, METH 1, is for operational
systems and processing. This part of the methodology will probably be most
familiar to those used to looking at classically structured operational method-
ologies. METH 2 is for DSS systems and processing—the data warehouse. The
essence of this component of the methodology is a data model as the vehicle
that allows the commonality of data to be recognized. It is in this section of the
appendix that the development of the data warehouse is described. The third
part of the methodology, METH 3, describes what occurs in the heuristic com-

Migration to the Architected Environment 295

ponent of the development process. It is in METH 3 that the usage of the ware-
house is described.

Summary

In this chapter, a migration plan and a methodology (found in the appendix)
were described. The migration plan addresses the issues of transforming data
out of the existing systems environment into the data warehouse environment.
In addition, the dynamics of how the operational environment might be orga-
nized were discussed.

The data warehouse is built iteratively. It is a mistake to build and populate
major portions of the data warehouse—especially at the beginning—because
the end user operates in what can be termed the “mode of discovery.” The end
user cannot articulate what he or she wants until the possibilities are known.

The process of integration and transformation of data typically consumes up to
80 percent of development resources. In recent years, ETL software has auto-
mated the legacy-to-data-warehouse interface development process.

The starting point for the design of the data warehouse is the corporate data
model, which identifies the major subject areas of the corporation. From the
corporate data model is created a lower-level “midlevel model.” The corporate
data model and the midlevel model are used as a basis for database design.
After the corporate data model and the midlevel model have been created, such
factors as the number of occurrences of data, the rate at which the data is used,
the patterns of usage of the data, and more are factored into the design.

The development approach for the data warehouse environment is said to be an
iterative or a spiral development approach. The spiral development approach is
fundamentally different from the classical waterfall development approach.

A general-purpose, data-driven methodology was also discussed. The general-
purpose methodology has three phases—an operational phase, a data ware-
house construction phase, and a data warehouse iterative usage phase.

The feedback loop between the data architect and the end user is an important
part of the migration process. Once the first of the data is populated into the
data warehouse, the data architect listens very carefully to the end user, mak-
ing adjustments to the data that has been populated. This means that the data
warehouse is in constant repair. During the early stages of the development,
repairs to the data warehouse are considerable. But as time passes and as the
data warehouse becomes stable, the number of repairs drop off.

CHAPTER

The Data Warehou
and the Web

environment-the World Wide Web. Embraced by Wall Street as the basis for the
new economy, Web technology enjoys wide popular support among business
people and technicians alike. Although not obvious at first glance, there is a
very strong affinity between the Web sites built by organizations and the data
warehouse. Indeed, data warehousing provides the foundation for the success-
ful operation of a Web-based ebusiness environment.

O ne of the most widely discussed technologies is the Internet and its associated

The Web environment is owned and managed by the corporation. In some
cases, the Web environment is outsourced. But in most cases the Web is a nor-
mal part of computer operations, and it is often used as a hub for the integration
of business systems. (Note that if the Web environment is outsourced, it
becomes much more difficult to capture, retrieve, and integrate Web data with
corporate processing.)

The Web environment interacts with corporate systems in two basic ways. One
interaction occurs when the Web environment creates a transaction that needs
to be executed-an order from a customer, for example. The transaction is for-
matted and shipped to corporate systems, where it is processed just like any
other order. In this regard, the Web is merely another source for transactions
entering the business.

297

298

CHAPTER 10

But the Web interacts with corporate systems another way as well—through
the collection of Web activity in a log. Figure 10.1 shows the capture of Web
activity and the placement of that activity in a log.

The Web log contains what is typically called clickstream data. Each time the
Internet user clicks to move to a different location, a clickstream record is cre-
ated. As the user looks at different corporate products, a record of what the
user has looked at, what the user has purchased, and what the user has thought
about purchasing is compiled. Equally important, what the Internet user has
not looked at and has not purchased can be determined. In a word, the click-
stream data is the key to understanding the stream of consciousness of the
Internet user. By understanding the mindset of the Internet user, the business
analyst can understand very directly how products, advertising, and promo-
tions are being received by the public, in a way much more quantified and much
more powerful than ever before.

But the technology required to make this powerful interaction happen is not
trivial. There are some obstacles to understanding the data that comes from the
Web environment. For example, Web-generated data is at a very low level of
detail-in fact, so low that it is not fit for either analysis or entry into the data
warehouse. To make the clickstream data useful for analysis and the ware-
house, the log data must be read and refined.

Figure 10.2 shows that Web log clickstream data is passed through software
that is called a Granularity Manager before entry into the data warehouse
environment.

A lot of processing occurs in the Granularity Manager, which reads clickstream
data and does the following:

m Edits out extraneous data

m (Creates a single record out of multiple, related clickstream log records

]
te
§= Q7T %
' AN

Figure 10.1 The activity of the Web environment is spun off into Web logs in records
called clickstream records.

The Data Warehouse and the Web 299

Data
Warehouse

» O

Figure 10.2 Data passes through the Granularity Manager before entering the data
warehouse.

~.| &M

m Edits out incorrect data

m Converts data that is unique to the Web environment, especially key data
that needs to be used in the integration with other corporate data

m Summarizes data

m Aggregates data

As a rule of thumb, about 90 percent of raw clickstream data is discarded or
summarized as it passes through the Granularity Manager. Once passed
through the manager into the data warehouse, the clickstream data is ready for
integration into the mainstream of corporate processing.

In summary, the process of moving data from the Web into the data warehouse
involves these steps:

m Web data is collected into a log.
m The log data is processed by passing through a Granularity Manager.

m The Granularity Manager then passes the refined data into the data
warehouse.

The way that data passes back into the Web environment is not quite as
straightforward. Simply stated, the data warehouse does not pass data directly
back into the Web environment. To understand why there is a less-than-straight-
forward access of data warehouse data, it is important to understand why the
Web environment needs data warehouse data in the first place.

The Web environment needs this type of data because it is in the data ware-
house that corporate information is integrated. For example, suppose there’s

300

a Web site dedicated to selling clothes. Now suppose the business analyst
decides that it would be nice for a clothing customer become a customer for
other goods the business sells, such as gardening tools, sports gear, travel
accessories, and costume jewelry. The analyst might decide to initiate a spe-
cial promotion for fancy women’s dresses and upscale costume jewelry. But
where does the analyst turn to find which women customers have bought cos-
tume jewelry in the past? Why, naturally, he or she turns to the data ware-
house because that is where the historical information about customers is
found.

In another example, suppose the Web site is dedicated to selling cars. The ana-
lyst would really like to know who has purchased the brand of car the company
is selling. Where is the historical information of this variety found? In the data
warehouse, of course.

The data warehouse then provides a foundation of integrated historical infor-
mation that is available to the business analyst. This affinity between the data
warehouse and the Web is shown in Figure 10.3.

Figure 10.3 shows that data passes out of the data warehouse into the corporate
operational data store (ODS), where it is then available for direct access from
the Web. At first glance, it may seem odd that the ODS sits between the data
warehouse and the Web. There are some very good reasons for this positioning.

/
oDs

data warehouse

]
%
Web environment AN

Figure 10.3 Data is passed to the ODS before it goes to the Web.

The Data Warehouse and the Web 301

The ODS is a hybrid structure that has some aspects of a data warehouse and
other aspects of an operational system. The ODS contains integrated data and
can support DSS processing. But the ODS can also support high-performance
transaction processing. It is this last characteristic of the ODS that makes it so
valuable to the Web.

When a Web site accesses the ODS, the Web environment knows that it will
receive a reply in a matter of milliseconds. This speedy response time makes it
possible for the Web to perform true transaction processing. If the Web were to
directly access the data warehouse, it could take minutes to receive a reply
from the warehouse. In the world of the Internet, where users are highly sensi-
tive to response time, this would be unacceptable. Clearly, the data warehouse
is not designed to support online response time. However, the ODS is designed
for that purpose. Therefore, the direct input into the Web environment is the
ODS, as seen by Figure 10.4.

At first glance it may seem that there is a lot of redundant data between the data
warehouse and the ODS. After all, the ODS is fed from the data warehouse.
(Note: The ODS being discussed here is a class IV ODS. For a complete descrip-
tion of the other classes of ODS, refer to my book Building the Operational
Data Store, Second Edition (Wiley, 1999).

But in truth there is very little overlap of data between the data warehouse and
the ODS. The data warehouse contains detailed transaction data, while the
ODS contains what can be termed “profile” data. To understand the differences

>
OoDSs
e
3 PE—
9 ——
%
Web environment ~

Figure 10.4 The ODS provides fast response time.

302

CHAPTER 10

be-tween profile data and detailed transaction data, consider the data seen in
Figure 10.5.

The data warehouse contains all sorts of transaction data about past interac-
tions between the customer and the business. Detailed transaction data includes
information about the following:

m Searches for men’s bicycles

m Searches for women'’s red bathing suits

m Purchases of a women’s blue bathing suits

m Searches for Ray-Ban wraparounds

The data warehouse maintains a detailed log, by customer, of the transactional

interactions the customer has had with the business, regardless of the source of
the interaction. The interaction could have occurred on the Web, through a cat-

data warehouse

ODS
Aug 13 entered as csmall, stayed 13 minutes
- looked at bicycles, mens
- looked at bathing suits, red

last activity - looked at cat litter

Dec 13 Aug 15 entered as csmall, stayed 26 minutes
activities - looked at bathing suits, bikinis

- surfing - bought blue bathing suit

- beach activities - looked at straw hats

- snorkeling - looked at sunglasses
tastes Aug 15 entered as csmall, stayed 1 minute

- bikinis - looked at Rayban wraparounds

- Raybans Aug 21 entered as csmall, stayed 12 minutes
places - looked at beach towels

- Bahamas - bought picnic basket

- Hawaii - looked at girls thong sandals

- Jamaica - looked at sun tan lotion
marital status Aug 22 entered as csmall, stayed 24 minutes

- single - booked ticket to Bahamas
favorite stores - sent flowers to significant other

- Nordstroms

- Victoria's Secret

GAP historical data
profile data

Figure 10.5 The ODS and the data warehouse hold different kinds of data.

The Data Warehouse and the Web 303

alog order, through a purchase at a retail store, and so forth. Typically, the time
the interaction occurred, the place of the interaction, and the nature of the
transaction are recorded in the data warehouse.

In addition, the data warehouse contains historical data. The transactions that
are found in the data warehouse go back as far as the business analyst thinks is
useful-a year, two years, or whatever length of time makes sense. This integrated
historical data contains the raw transaction data with no intent to interpret the
data.

On the other hand, the ODS is full of interpretive data. Data has been read in the
data warehouse, analyzed, and turned into “profile” data, or profile records.
The profile records reside in the ODS. Figure 10.7 shows that a profile record
has been created based on reading all the historical, integrated data found in
the data warehouse. The profile record contains all sorts of information that is
created as a result of reading and interpreting the transaction data. For exam-
ple, for the customer shown for Figure 10.7, the profile record shows that the
customer is all of the following:

m A beach-oriented person, interested in surfing, sun bathing, and snorkeling

m Likely to travel to places like the Bahamas, Hawaii, and Jamaica

m Single

m An upscale shopper who is likely to frequent places such as Nordstrom,
Victoria’s Secret, and the Gap

In other words, the customer is likely to have the propensities and proclivities
shown in the profile record seen in Figure 10.7. Note that the customer may
never have been to Hawaii. Nevertheless, it is predicted that the customer
would like to go there.

To create the profile data from the transaction data, a certain amount of analy-
sis must be done. Figure 10.6 shows the reading of the transactional data in
order to produce profile data.

In Figure 10.6, the detailed integrated historical transaction data is read and
analyzed in order to produce the profile record. The analysis is done periodi-
cally, depending on the rate of change of data and the business purpose behind
the analysis. The frequency of analysis and subsequent update of the profile
record may occur as often as once a day or as infrequently as once a year. There
is wide variability in the frequency of analysis.

The analytical program is both interpretive and predictive. Based on the past
activity of the customer and any other information that the analytical program
can get, the analytical program assimilates the information to produce a very

304

CHAPTER 10
OoDS
data warehouse
last activity Aug 13 entered as csmall, stayed 13 minutes
Dec 13 - looked at bicycles, mens
activities - looked at bathing suits, red
- surfing - looked at cat litter
- beach activities Aug 15 entered as csmall, stayed 26 minutes
- snorkeling - looked at bathing suits, bikinis
tastes - bought blue bathing suit
- bikinis - looked at straw hats
- raybans — - looked at sunglasses
places Aug 15 entered as csmall, stayed 1 minute
- Bahamas — - looked at Rayban wraparounds
- Hawaii Aug 21 entered as csmall, stayed 12 minutes
- Jamaica M— - looked at beach towels
marital status - bought picnic basket
- single . - looked at girls thong sandals
favorite stores analysis - looked at sun tan lotion
- Nordstroms Aug 22 entered as csmall, stayed 24 minutes
- Victoria's Secret - booked ticket to Bahamas
- GAP - sent flowers to significant other

Figure 10.6 Periodically the detailed historical data is read, analyzed, and loaded into
the format required for the ODS.

personal projection of the customer. The projection is predictive as well as fac-
tual. Certain factual information is standard:

m Date of the last interaction with the customer
m Nature of the last interaction

m Size of the last purchase

Other information is not nearly as factual. The predictive aspect of the analysis
includes such information as the following:

m Whether the customer is upscale

m The customer’s sex

m The customer’s age

m Whether the customer is a frequent traveler

m Where the customer is likely to travel

The profile record then contains a thumbnail sketch of the customer that is
available in the ODS in an instant. And in that instant, the Web environment is
provided with excellent response time and an integrated, interpretive view of
the customer base that is being served.

The Data Warehouse and the Web 305

Of course, information other than customer information is available from the
data warehouse and the ODS. Typically, vendor information, product informa-
tion, sales information, and the like are also available for the Web analyst.

Providing good response time and preanalyzed data are not the only roles the
data warehouse environment plays in supporting the Web. Another key role is
the management of large amounts of data.

Web processing generates very large amounts of information. Even when a
Granularity Manager is used to maximum effectiveness, the Web site still spews
forth a mountain of data.

The first impulse of many Web designers is to store Web data in the Web envi-
ronment itself. But very quickly the Web becomes swamped, and once that hap-
pens, nothing works properly. Data becomes entangled in everything-in access
queries, in loads, in indexes, in monitors, and elsewhere. Coming to the aid of
the Web is the data warehouse itself, as well as the bulk storage overflow com-
ponent of the data warehouse. Figure 10.7 shows that data is periodically
offloaded into the data warehouse from the Web environment. It is then peri-
odically offloaded from the data warehouse to the overflow environment.

)

megabytes,

gigabytes;

hours' worth
|, of data

100s of gigabytes;
months' and a few
years' worth of data

terabytes,
._.6_.‘ petabytes;
ears, decades'
y
._._ worth of data

Figure 10.7 Volumes of data cascade down from the Web to the data warehouse to
alternative storage.

306

CHAPTER 10

The Granularity Manager takes care of loading data from the Web to the data
warehouse on a daily or even an hourly basis, depending on the average amount
of Web traffic. And data from the data warehouse is loaded monthly or quar-
terly to the overflow storage environment. In so doing, there never is an unman-
ageable amount of data at any level of the architecture.

Typically, the Web environment holds a day’s worth of data, while the data
warehouse might hold a year’s worth. And typically the overflow storage com-
ponent holds as much as a decade’s worth of data. The data warehouse also
supports the Web environment with the integration of data. Figure 10.8 shows
that normal operational systems feed data to the data warehouse, where it
becomes available for integrated processing. Data comes out of the Granularity
Manager to merge with previously integrated business data in the data ware-
house. In so doing, the data warehouse becomes the single place where you can
get an integrated view of all business data from the Web, from other systems,
from anywhere.

Another important aspect of the data warehouse is its ability to support multi-
ple Web sites. For a large corporation, multiple Web sites are a fact of life, and
their support is essential for merging and integrating the data from all sites.

i
S AL

Figure 10.8 The data warehouse is where Web data is integrated with other data from
the corporation.

The Data Warehouse and the Web 307

Supporting the Ebusiness Environment

A final environment that is supported by the data warehouse is the Web-based
ebusiness environment. Figure 10.9 shows the support of the Web environment
by the data warehouse.

The interface between the Web environment and the data warehouse is at the
same time both simple and complex. It is simple from the perspective that data
moved from the data warehouse back and forth to the Web environment. It is
complex in that the movement is anything less than straightforward.

Moving Data from the Web
to the Data Warehouse

Data in the Web environment is collected at a very, very low level of detail—too
low a level to be of use in the data warehouse. So, as the data passes from the
Web environment to the data warehouse, it must be conditioned and its level of
granularity must be raised. The sorts of things that are done to the data in the
Web environment before becoming useful in the data warehouse are the fol-
lowing:

1o [.
1) @&@%ﬁ

O

Figure 10.9 The data warehouse can service more than one ebusiness.

308 CHAPTER 10

m FExtraneous data is removed.
m Like occurrences of data are added together.
m Data is resequenced.

m Data is edited.

m Data is cleansed.

-

Data is converted.

In short, the Web-based data goes through a rigorous cleansing/conversion/
reduction exercise before it is fit for inclusion into the data warehouse.

The Web-based data usually comes through the Web logs that are created in the
Web environment. There is, as a rule of thumb, about a 90 percent reduction of
data that occurs as the data from the Web is reduced.

The data coming from the Web passes through software that is often called
Granularity Management software. In many ways, the Granularity Management
software is akin to the ETL software found in the movement of data from the
legacy environment to the data warehouse.

The data coming into the Web environment comes primarily from the click-
stream processing that occurs in the Web environment. Clickstream processing
is good for telling what has happened in the Web-based user sessions. To be
really useful, though, the clickstream data must be connected to the other
mainstream data that passes through normal corporate systems. It is only when
clickstream data has been distilled and merged with normal corporate data that
the full benefit of Web information can be felt.

Moving Data from the Data
Warehouse to the Web

The Web environment is very sensitive to response time; it cannot be kept wait-
ing more than a millisecond or two when it needs information. If the Web envi-
ronment must wait longer than that, performance will be impacted. In many
regards, the Web environment is very similar to the OLTP environment, at least
as far as response-time sensitivity is concerned. It is for these reasons that
there is no direct interface between the data warehouse and the Web environ-
ment.

Instead, the interface between the two environments passes through the cor-
porate ODS residing in the same environment as the data warehouse. The ODS
is designed to provide millisecond response time; the data warehouse is not.

The Data Warehouse and the Web 309

Therefore, data passes from the data warehouse to the ODS. Once in the ODS
the data waits for requests for access from the Web environment. The Web then
makes a request and gets the needed information very quickly and very consis-
tently.

The ODS contains profile information, unlike the data warehouse, which con-
tains detailed historical information. In addition, the ODS contains truly corpo-
ratewide information.

Once the data from the ODS passes into the Web environment, it can be used in
any number of ways. The data can be used to shape the dialogues the Web has
with its users, for personalization, or for direct dialogue. In short, the data com-
ing from the ODS/data warehouse can be used as the creativity of the Web
designer demands.

Web Support

What exactly is it that the data warehouse provides for the Web-based ebusi-
ness environment? The data warehouse provides several important capabili-
ties:

m The ability to absorb huge amounts of data. Once the data warehouse is
equipped with an overflow storage mechanism such as alternate/near-line
storage and once the Web data passes through a Granularity Manager, the
data warehouse is equipped to effectively handle an infinite amount of
data. The data is quickly moved through the Web environment into the data
warehouse. In doing so, the volumes of data generated by the Web environ-
ment are not an impediment to performance or availability in the Web envi-
ronment.

m Access to integrated data. Web data by itself is naked and fairly useless.
But once Web-generated data is combined with other corporate data, the
mixture is very powerful. Web data once put into the data warehouse is
able to be integrated, and in doing so, very useful information is created.

m The ability to provide very good performance. Because the Web accesses
the ODS, not the data warehouse, good performance is consistently
achieved.

These then are the important features that the data warehouse provides to the
Web-based ebusiness environment. The data warehouse provides the important
background infrastructure that the Web needs in order to be successful.

310 CHAPTER 10

Summary

We have seen that the Web environment is supported by the data warehouse in
a variety of ways. The interface for moving data from the Web to the data ware-
house is fairly simple. Web data is trapped in logs. The logs feed their click-
stream information to the Granularity Manager. The Granularity Manager edits,
filters, summarizes, and reorganizes data. The data passes out of the Granular-
ity Manager into the data warehouse.

The interface for moving data from the warehouse to the Web is a little more
complex. Data passes from the data warehouse into an ODS. In the ODS a pro-
file record is created. The ODS becomes the sole point of contact between the
Web environment and the data warehouse for purposes of data flow from the
data warehouse to the Web environment. The reason for this is simple: The ODS
is able to ensure that online transactions are processed quickly and consis-
tently, which is essential for efficient Web processing.

In addition, the data warehouse provides a place where massive amounts of
data can be downloaded from the Web environment and stored.

The data warehouse also provides a central point where corporate data can be
merged and integrated with data coming in from one or more Web sites into a
common single source.

CHAPTER

ERP and the Data

Enterprise Resource Planning (ERP), the applications and transaction process-
ing built for a company. The applications and transactions—built and main-
tained centrally by the vendor—cover the following corporate functions:

O ne of the most important advances in technology in the past 10 years has been

= Human resources
Inventory management
Financial management
Supply chain management
Logistics

Manufacturing

Distribution

Customer service

ERP is led by such companies as SAP, PeopleSoft, JD Edwards, BAAN, Oracle
Financials, and others. There are several reasons why organizations find ERP
application software attractive. The primary reasons focus on the frustrations
in handling existing applications. These include the following:

Aging. Many organizations have applications that were written years ago.
These applications represent the business of a quarter century ago and

il

312

were written so that they are unable to be changed. They are undocu-
mented ande fragile. The people who wrote them have long departed.

Unintegrated. Existing applications each take a narrow view of the business.
And no two applications have the same definitions, the same calculations,
the same encoding structure, the same key structure as any other applica-
tion. When a corporate perspective of data is needed, there is none.

Incomplete. Existing applications do not take into account such important
events as year 2000 and the movement of currency to the Euro.

ERP software encompasses the transaction component of the business. At the
transaction level the application governs the detailed interaction between the
customer and the corporation. Payments are made, orders are entered, ship-
ments are done, and products are manufactured.

ERP applications are at the heart of running any business. But with ERP, as with
the non-ERP environment, transactions are only the start of the information
process. There is still a need for a data warehouse.

ERP Applications Outside the Data Warehouse

Figure 11.1 shows the classical structuring of the data warehouse. This includes
operational applications that feed data to a transformation process, the data
warehouse, and DSS processes such as data marts, DSS applications, and
exploration and data mining warehouses. The basic architecture of the data
warehouse does not change in the face of ERP.

, / data marts
F > DSS applications
/

T

exploration warehouse

Figure 11.1 The data warehouse comes from operational applications and services
other DSS components.

313

The ERP environment contains the application processing, where transactions
occur. It then feeds the data warehouse, just like any other application. Fig-
ure 11.2 shows that ERP applications feed their data into a data warehouse.

The interface that takes data into the data warehouse is very similar to a non-
ERP interface, with a few exceptions:

m The ERP interface has to deal with only the DBMS technologies that the
ERP supports. The non-ERP interface must deal with all interfaces.

m [t has a much tighter grip on the data and structures that constitute the
application environment because the ERP vendor owns and controls the
interface.

m The interface often has to go into the ERP environment and find the right
data and “glue” it together in order to make it useful for the data ware-
house environment.

Other than these differences, the ERP integration interface is the same as the
interface that integrates data into a warehouse for non-ERP data. The data
warehouse can be built in the ERP environment, as shown in Figure 11.2. Here
data is pulled out of the ERP environment and into an operating environment
completely unrelated to ERP. The data warehouse can be an Oracle, DB2) NT
SQL Server, or other data warehouse. Once the data leaves the ERP environ-
ment, the ERP environment simply becomes another source of data.

There are several advantages to pulling the data out of the ERP environment
and into a different operating environment. One is that the data warehouse is

ERP
data marts
data warehouse
@ __—— DSS applications
exploration warehouse
/

Figure 11.2 The ERP environment feeds the external data warehouse.

314 |

free from any constraints that might be placed on it. Another is that the data
warehouse database designer is free to design the data warehouse environment
however he or she sees fit.

Building the Data Warehouse
Inside the ERP Environment

The data warehouse can be built inside the confines of the ERP environment
from ERP sources, as shown in Figure 11.3. Such a proposition might be SAP’s
BW or PeopleSoft’'s EPM. In this case, the ERP vendor provides the application
and the data warehouse as well.

There are some distinct advantages to this approach. The primary advantage is
that the ERP vendor provides the infrastructure. This saves the designer an
enormous amount of work, and it saves the developer from having to deal with
complexities of design and development. In short, the inclusion of the data
warehouse with ERP applications greatly simplifies the life of the data ware-
house designer. In addition, the long-term issue of maintenance is alleviated.

Feeding the Data Warehouse
Through ERP and Non-ERP Systems

The inclusion of the data warehouse with the ERP applications is a popular
choice because the customer has a solution. But there are other alternatives.

/ data marts

'\ _ | » DSS applications
& /
\ exploration warehouse

Figure 11.3 The data warehouse can be built in the ERP environment.

315

Figure 11.4 shows that a data warehouse is built outside the ERP environment
and that non-ERP applications contribute data to the data warehouse.

Figure 11.4 is a very common scenario because of the issue of integrating non-
ERP data with ERP data. Most organizations do not have a completely ERP
environment. There are almost always non-ERP applications; where this occurs
the two types of data must be integrated.

There is a second mitigating factor in the appeal of the structure seen in Fig-
ure 11.4. Often organizations build a data warehouse for their non-ERP data at
the same time that the ERP environment is being established. By the time the
ERP environment is complete (or at least functional), the non-ERP data ware-
house is already established. When it comes time to put the ERP data in a data
warehouse, it is a simple matter to take the ERP data out of the ERP environ-
ment and place it into the data warehouse.

But there is another alternative. Figure 11.5 shows that when the data ware-
house is placed under the control of the ERP environment, external data can be
placed into the data warehouse.

Dﬁ
g:j\

/ data marts

__— DSS applications

./ \ exploration warehouse
//

Figure 11.4 Both ERP and non-ERP operational systems support the non-ERP data
warehouse.

316

.

H __——+—> DSS applications
®

./ S~ exploration
? warehouse
/

Figure 11.5 Both ERP and non-ERP operational systems support the ERP-based data
warehouse.

Once the non-ERP data is placed in the control of the data warehouse, the data
can take advantage of all the infrastructure built by the ERP vendor. This
approach is most advantageous when the ERP environment is built before any
data warehouse is built.

Putting all of the data in the ERP-controlled data warehouse does not mean that
all DSS processing done from the data warehouse must be done within the con-
fines of the ERP data warehouse. ERP vendors go out of their way to put a
robust amount of analytical processing inside the ERP environment, and that is
one of the great appeals of a ERP data warehouse. There is nothing, however,
that says that other DSS processing cannot be done outside the ERP data ware-
house environment. Figure 11.6 shows that DSS processing that relies on the
data warehouse can be done either within or outside the ERP environment (or,
for that matter, in both the ERP and non-ERP environments.)

There is yet another very common possibility for data warehousing in the
ERP environment—a circumstance where there is both an ERP- and a non-

ERP and the Data Warehouse 317

exploration

—_—
D warehouse
data marts
/ applications

, .\ data marts

P \DSS
applications
exploration
@j — warehouse

Figure 11.6 The data mart, DSS application, and exploration warehouse processing can
be done inside or outside the ERP environment (or both) when the data
warehouse is constructed inside the ERP environment.

ERP-based data warehouse, as shown in Figure 11.7. This possibility is quite
legitimate when there is little or no business integration between the two envi-
ronments. For example, the non-ERP data warehouse may represent a line of
cosmetics, and the ERP-based data warehouse may represent the manufacture
of motorcycles. Because there simply is no business relationship between cos-
metics and motorcycles, it is quite acceptable to have separate data ware-
houses for the two environments.

If the two environments must share data, such as financial information, then it
may be transferred from one warehouse to the other. For example, say that the
cosmetics organization had quarterly profitability of $2,900,871 and the motor-
cycle manufacturer had profitability for the quarter of $45,880,710. Because
both organizations share a bottom line, there may be integration of data. But
with regard to customers, business practices, promotions, campaigns, and so
forth, there is absolutely no business integration. In such a case separate data
warehouses make sense.

318

data marts

G R e Ee
T DSS applications
A

/ ‘
&j\'. ' exploration warehouse

o data marts
1

H | ———+— DSS applications
/

™, exploration
warehouse

Figure 11.7 When there is no need for integration, it is possible to have multiple data
warehouses.

The ERP-Oriented Corporate Data Warehouse

Occasionally a specialized form of a global data warehouse—called the ERP-
oriented corporate data warehouse—occurs. Figure 11.8 shows a corporate
ERP data warehouse that collects data from the different geographic locales:
the United States, Ethiopia, Switzerland, Japan, Australia, and Kuwait. The cor-
porate data warehouse presents to management a truly global perspective of
worldwide operations.

The corporate data warehouse is in an ERP environment. So are most of the
larger supporting local installations. But some of the local organizations have
no ERP installation. How common is such a picture? Very common.

319

corporate

consolidated |&—®
data &
warehouse]
(SAP) 1
=
™~ — =]
&ﬁ B /8 .\8
o= &// Japanese . b——0
L ERP Australian e
U.S. ERP Ethiopian : ERP —=n
e applications Swiss (BAAN) Kuwaiti
(SAP) ERP (SAP) applications

(PeopleSoft)

Figure 11.8 An ERP-oriented rendition of the global data warehouse.

The first issue is getting data into the corporate ERP data warehouse. The data
needs to be restructured and converted as it passes into the warehouse. How
easy is the transition from the non-ERP installations to the corporate data
warehouse? Not particularly. And how easy is the passage of data from a local
ERP installation into the corporate ERP? Surprisingly difficult as well. The rea-
son is that even though the local ERP installation may be in the same brand of
software as the corporate ERP installation, there will nevertheless be many dif-
ferences in the way the software has been implemented. Even if all of the local
installations were in the same type of ERP, conversion to the headquarters
installation would still be difficult.

Furthermore, one of the major challenges is keeping the headquarters data
warehouse in sync. Perhaps one day the rebels take over in Peru and laws
change. The headquarters data warehouse needs to be changed. The next day,
anew discovery of oil is made in the Caribbean. More changes have to be made
to the corporate data warehouse. Next month, a new electronic device is made
that allows electricity generators to generate 10 times the power they once did
with no change in equipment. The headquarters data warehouse needs to be

320 |

changed again. Next month, there is an oil spill in Alaska, and the corporate
data warehouse needs to be changed yet again.

In short, there is a never-ending series of events that require the corporate data
to be constantly changed. Building the corporate infrastructure to withstand
this eternal change is a significant challenge.

Summary

The ERP environment is an application-based environment found in many
places. Even with an ERP installation there is a need for a data warehouse. The
developer has several choices, of which each have advantages and disadvan-
tages:

m Move ERP data to a non-ERP data warehouse.

m Move ERP data to an ERP-based data warehouse.

m Move ERP data to an ERP-based data warehouse and move non-ERP data
to a non-ERP-based data warehouse.

CHAPTER

Data Warehouse De
Review Checklist

ronment is the design review. Through design review, errors can be detected
and resolved prior to coding. The cost benefit of identifying errors early in the
development life cycle is enormous.

O ne of the most effective techniques for ensuring quality in the operational envi-

In the operational environment, design review is usually done on completion of
the physical design of an application. The types of issues around which an oper-
ational design review centers are the following:

Transaction performance
Batch window adequacy
System availability
Capacity

Project readiness

User requirements satisfaction

Done properly in the operational environment, design review can save signifi-
cant resources and greatly increase user satisfaction. Most importantly, when
design review has been properly executed, major pieces of code do not have to
be torn up and rewritten after the system has gone into production.

321

322 |

Design review is as applicable to the data warehouse environment as it is to the
operational environment, with a few provisos.

One proviso is that systems are developed in the data warehouse environment
in an iterative manner, where the requirements are discovered as a part of the
development process. The classical operational environment is built under the
well-defined system development life cycle (SDLC). Systems in the data ware-
house environment are not built under the SDLC. Other differences between
the development process in the operational environment and the data ware-
house environment are the following:

m Development in the operational environment is done one application at a
time. Systems for the data warehouse environment are built a subject area
at a time.

m [n the operational environment, there is a firm set of requirements that
form the basis of operational design and development. In the data ware-
house environment, there is seldom a firm understanding of processing
requirements at the outset of DSS development.

m [n the operational environment, transaction response time is a major and
burning issue. In the data warehouse environment, transaction response
time had better not be an issue.

m |n the operational environment, the input from systems usually comes
from sources external to the organization, most often from interaction
with outside agencies. In the data warehouse environment, it usually
comes from systems inside the organization where data is integrated from
a wide variety of existing sources.

m [n the operational environment, data is nearly all current valued (i.e., data
is accurate as of the moment of use). In the data warehouse environment,
data is time variant (i.e., data is relevant to some one moment in time).

There are, then, some substantial differences between the operational and data

warehouse environments, and these differences show up in the way design
review is conducted.

When to Do Design Review

Design review in the data warehouse environment is done as soon as a major
subject area has been designed and is ready to be added to the data warehouse
environment. It does not need to be done for every new database that goes up.
Instead, as whole new major subject areas are added to the database, design
review becomes an appropriate activity.

Data Warehouse Design Review Checklist 323

Who Should Be in the Design Review?

The attendees at the design review include anyone who has a stake in the devel-
opment, operation, or use of the DSS subject area being reviewed.

Normally, this includes the following parties:

m The data administration (DA)

m The database administration (DBA)
Programmers

The DSS analysts

End users other than the DSS analysts
Operations

Systems support

Management

Of this group, by far the most important attendees are the end users and the
DSS analysts.

One important benefit from having all the parties in the same room at the same
time is the opportunity to short-circuit miscommunications. In an everyday
environment where the end user talks to the liaison person who talks to the
designer who talks to the programmer, there is ample opportunity for miscom-
munication and misinterpretation. When all the parties are gathered, direct con-
versations can occur that are beneficial to the health of the project being
reviewed.

What Should the Agenda Be?

The subject for review for the data warehouse environment is any aspect of
design, development, project management, or use that might prevent success.
In short, any obstacle to success is relevant to the design review process. As
a rule, the more controversial the subject, the more important that it be
addressed during the review.

The questions that form the basis of the review process are addressed in the lat-
ter part of this chapter.

The Results

A data warehouse design review has three results:

m An appraisal to management of the issues, and recommendations as to fur-
ther action

324 | S T

m A documentation of where the system is in the design, as of the moment of
review

m An action item list that states specific objectives and activities that are a
result of the review process

Administering the Review

The review is led by two people—a facilitator and a recorder. The facilitator is
never the manager or the developer of the project being reviewed. If, by some
chance, the facilitator is the project leader, the purpose of the review—from
many perspectives—will have been defeated.

To conduct a successful review, the facilitator must be someone removed from
the project for the following reasons:

As an outsider, the facilitator provides an external perspective—a fresh look—
at the system. This fresh look often reveals important insights that someone
close to the design and development of the system is not capable of providing.

As an outsider, a facilitator can offer criticism constructively. The criticism that
comes from someone close to the development effort is usually taken person-
ally and causes the design review to be reduced to a very base level.

A Typical Data Warehouse
Design Review

1. Who is missing in the review? Is any group missing that ought to be in
attendance? Are the following groups represented?

DA

DBA

Programming

DSS analysts

End users

Operations

Systems programming
Auditing

Management
Who is the official representative of each group?

ISSUE: The proper attendance at the design review by the proper people is
vital to the success of the review regardless of any other factors. Easily, the

Data Warehouse Design Review Checklist 325

most important attendee is the DSS analyst or the end user. Management
may or may not attend at their discretion.

2. Have the end-user requirements been anticipated at all? If so, to what
extent have they been anticipated? Does the end-user representative to the
design review agree with the representation of requirements that has been
done?

ISSUE: In theory, the DSS environment can be built without interaction
with the end user—with no anticipation of end-user requirements. If there
will be a need to change the granularity of data in the data warehouse envi-
ronment, or if EIS/artificial intelligence processing is to be built on top of
the data warehouse, then some anticipation of requirements is a healthy
exercise to go through. As arule, even when the DSS requirements are antic-
ipated, the level of participation of the end users is very low, and the end
result is very sketchy. Furthermore, a large amount of time should not be
allocated to the anticipation of end-user requirements.

3. How much of the data warehouse has already been built in the data ware-
house environment?

m Which subjects?

m What detail? What summarization?

m How much data—in bytes? In rows? In tracks/cylinders?
m How much processing?

m What is the growth pattern, independent of the project being reviewed?

ISSUE: The current status of the data warehouse environment has a great
influence on the development project being reviewed. The very first devel-
opment effort should be undertaken on a limited-scope, trial-and-error
basis. There should be little critical processing or data in this phase. In addi-
tion, a certain amount of quick feedback and reiteration of development
should be anticipated.

Later efforts of data warehouse development will have smaller margins for
error.

4. How many major subjects have been identified from the data model? How
many are currently implemented? How many are fully implemented? How
many are being implemented by the development project being reviewed?
How many will be implemented in the foreseeable future?

ISSUE: As arule, the data warehouse environment is implemented one sub-
ject at a time. The first few subjects should be considered almost as experi-
ments. Later subject implementation should reflect the lessons learned from
earlier development efforts.

326

5. Does any major DSS processing (i.e., data warehouse) exist outside the

data warehouse environment? If so, what is the chance of conflict or over-
lap? What migration plan is there for DSS data and processing outside the
data warehouse environment? Does the end user understand the migration
that will have to occur? In what time frame will the migration be done?

ISSUE: Under normal circumstances, it is a major mistake to have only part
of the data warehouse in the data warehouse environment and other parts
out of the data warehouse environment. Only under the most exceptional
circumstances should a “split” scenario be allowed. (One of those circum-
stances is a distributed DSS environment.)

If part of the data warehouse, in fact, does exist outside the data warehouse
environment, there should be a plan to bring that part of the DSS world back
into the data warehouse environment.

. Have the major subjects that have been identified been broken down into

lower levels of detail?
m Have the keys been identified?

Have the attributes been identified?

-

m Have the keys and attributes been grouped together?

m Have the relationships between groupings of data been identified?
-

Have the time variances of each group been identified?

ISSUE: There needs to be a data model that serves as the intellectual heart
of the data warehouse environment. The data model normally has three
levels—a high-level model where entities and relationships are identified; a
midlevel where keys, attributes, and relationships are identified; and a low
level, where database design can be done. While not all of the data needs to
be modeled down to the lowest level of detail in order for the DSS environ-
ment to begin to be built, at least the high-level model must be complete.

. Is the design discussed in question 6 periodically reviewed? (How often?

Informally? Formally?) What changes occur as a result of the review? How
is end-user feedback channeled to the developer?

ISSUE: From time to time, the data model needs to be updated to reflect
changing business needs of the organization. As a rule, these changes are
incremental in nature. It is very unusual to have a revolutionary change.
There needs to be an assessment of the impact of these changes on both
existing data warehouse data and planned data warehouse data.

. Has the operational system of record been identified?

m Has the source for every attribute been identified?

m Have the conditions under which one attribute or another will be the
source been identified?

Data Warehouse Design Review Checklist 327

m If there is no source for an attribute, have default values been identified?

m Has a common measure of attribute values been identified for those
data attributes in the data warehouse environment?

m Has a common encoding structure been identified for those attributes
in the data warehouse environment?

m Has a common key structure in the data warehouse environment been
identified? Where the system of record key does not meet the condi-
tions for the DSS key structure, has a conversion path been identified?

m [f data comes from multiple sources, has the logic to determine the
appropriate value been identified?

m Has the technology that houses the system of record been identified?

m Will any attribute have to be summarized on entering the data ware-
house?

m Will multiple attributes have to be aggregated on entering the data
warehouse?

m Will data have to be resequenced on passing into the data warehouse?

ISSUE: After the data model has been built, the system of record is identi-
fied. The system of record normally resides in the operational environment.
The system of record represents the best source of existing data in support
of the data model. The issues of integration are very much a factor in defin-
ing the system of record.

9. Has the frequency of extract processing—from the operational system of
record to the data warehouse environment—been identified? How will the
extract processing identify changes to the operational data from the last
time an extract process was run?

By looking at time-stamped data?

By changing operational application code?

-
-
m By looking at a log file? An audit file?
m By looking at a delta file?

|

By rubbing “before” and “after” images together?

ISSUE: The frequency of extract processing is an issue because of the
resources required in refreshment, the complexity of refreshment process-
ing, and the need to refresh data on a timely basis. The usefulness of data
warehouse data is often related to how often the data warehouse data is
refreshed.

One of the most complex issues—from a technical perspective—is deter-
mining what data is to be scanned for extract processing. In some cases, the
operational data that needs to pass from one environment to the next is

328

10.

11.

12.

straightforward. In other cases, it is not clear at all just what data should be
examined as a candidate for populating the data warehouse environment.

What volume of data will normally be contained in the DSS environment?
If the volume of data is large,

m Will multiple levels of granularity be specified?
m Will data be compacted?
m Will data be purged periodically?

m Will data be moved to near-line storage? At what frequency?

ISSUE: In addition to the volumes of data processed by extraction, the
designer needs to concern himself or herself with the volume of data actu-
ally in the data warehouse environment. The analysis of the volume of data
in the data warehouse environment leads directly to the subject of the gran-
ularity of data in the data warehouse environment and the possibility of mul-
tiple levels of granularity.

What data will be filtered out of the operational environment as extract
processing is done to create the data warehouse environment?

ISSUE: It is very unusual for all operational data to be passed to the DSS
environment. Almost every operational environment contains data that is
relevant only to the operational environment. This data should not be
passed to the data warehouse environment.

What software will be used to feed the data warehouse environment?
Has the software been thoroughly shaken out?

What bottlenecks are there or might there be?

Is the interface one-way or two-way?

What technical support will be required?

What volume of data will pass through the software?

What monitoring of the software will be required?

What alterations to the software will be periodically required?
What outage will the alterations entail?

How long will it take to install the software?

Who will be responsible for the software?

When will the software be ready for full-blown use?

ISSUE: The data warehouse environment is capable of handling a large
number of different types of software interfaces. The amount of break-in
time and “infrastructure” time, however, should not be underestimated. The
DSS architect must not assume that the linking of the data warehouse envi-

Data Warehouse Design Review Checklist 329

13.

14.

15.

16.

ronment to other environments will necessarily be straightforward and
easy.

What software/interface will be required for the feeding of DSS departmen-
tal and individual processing out of the data warehouse environment?

m Has the interface been thoroughly tested?

What bottlenecks might exist?

Is the interface one-way or two-way?

What technical support will be required?

What traffic of data across the interface is anticipated?

What monitoring of the interface will be required?

What alterations to the interface will there be?

What outage is anticipated as a result of alterations to the interface?
How long will it take to install the interface?

Who will be responsible for the interface?

When will the interface be ready for full-scale utilization?

What physical organization of data will be used in the data warehouse envi-
ronment? Can the data be directly accessed? Can it be sequentially
accessed? Can indexes be easily and cheaply created?

ISSUE: The designer needs to review the physical configuration of the data
warehouse environment to ensure that adequate capacity will be available
and that the data, once in the environment, will be able to be manipulated in
a responsive manner.

How easy will it be to add more storage to the data warehouse environ-
ment at a later point in time? How easy will it be to reorganize data within
the data warehouse environment at a later point in time?

ISSUE: No data warehouse is static, and no data warehouse is fully speci-
fied at the initial moment of design. It is absolutely normal to make correc-
tions in design throughout the life of the data warehouse environment. To
construct a data warehouse environment either where midcourse correc-
tions cannot be made or are awkward to make is to have a faulty design.

What is the likelihood that data in the data warehouse environment will
need to be restructured frequently (i.e., columns added, dropped, or
enlarged, keys modified, etc.)? What effect will these activities of restruc-
turing have on ongoing processing in the data warehouse?

ISSUE: Given the volume of data found in the data warehouse environment,
restructuring it is not a trivial issue. In addition, with archival data, restruc-
turing after a certain moment in time often becomes a logical impossibility.

330

17.

18.

19.

What are the expected levels of performance in the data warehouse envi-
ronment? Has a DSS service level agreement been drawn up either for-
mally or informally?

ISSUE: Unless a DSS service-level agreement has been formally drawn up,
it is impossible to measure whether performance objectives are being met.
The DSS service level agreement should cover both DSS performance levels
and downtime. Typical DSS service level agreements state such things as the
following:

m Average performance during peak hours per units of data

m Average performance during off-peak hours per units of data
m Worst performance levels during peak hours per units of data
m Worst performance during off-peak hours per units of data

m System availability standards

One of the difficulties of the DSS environment is measuring performance.
Unlike the operational environment where performance can be measured in
absolute terms, DSS processing needs to be measured in relation to the
following:

m How much processing the individual request is for
m How much processing is going on concurrently
m How many users are on the system at the moment of execution

What are the expected levels of availability? Has an availability agreement
been drawn up for the data warehouse environment, either formally or
informally?

ISSUE: (See issue for question 17.)

How will the data in the data warehouse environment be indexed or
accessed?

Will any table have more than four indexes?

Will any table be hashed?

Will any table have only the primary key indexed?

What overhead will be required to maintain the index?
What overhead will be required to load the index initially?

How often will the index be used?

Can/should the index be altered to serve a wider use?

ISSUE: Data in the data warehouse environment needs to be able to be
accessed efficiently and in a flexible manner. Unfortunately, the heuristic

Data Warehouse Design Review Checklist 331

20.

21.

22.

nature of data warehouse processing is such that the need for indexes is
unpredictable. The result is that the accessing of data in the data warehouse
environment must not be taken for granted. As a rule, a multitiered
approach to managing the access of data warehouse data is optimal:

m The hashed/primary key should satisfy most accesses.

m Secondary indexes should satisfy other popular access patterns.
m Temporary indexes should satisfy the occasional access.
-

Extraction and subsequent indexing of a subset of data warehouse data
should satisfy infrequent or once-in-a-lifetime accesses of data.
In any case, data in the data warehouse environment should not be stored in
partitions so large that they cannot be indexed freely.

What volumes of processing in the data warehouse environment are to be
expected? What about peak periods? What will the profile of the average
day look like? The peak rate?

ISSUE: Not only should the volume of data in the data warehouse environ-
ment be anticipated, but the volume of processing should be anticipated as
well.

What level of granularity of data in the data warehouse environment will
there be?

m A high level?

A low level?

Multiple levels?

Will rolling summarization be done?

Will there be a level of true archival data?

Will there be a living sample level of data?

ISSUE: Clearly, the most important design issue in the data warehouse envi-
ronment is that of granularity of data and the possibility of multiple levels of
granularity. In a word, if the granularity of the data warehouse environment
is done properly, then all other issues become straightforward; if the granu-
larity of data in the data warehouse environment is not designed properly,
then all other design issues become complex and burdensome.

What purge criteria for data in the data warehouse environment will there
be? Will data be truly purged, or will it be compacted and archived else-
where? What legal requirements are there? What audit requirements are
there?

ISSUE: Even though data in the DSS environment is archival and of neces-
sity has a low probability of access, it nevertheless has some probability of

332

23.

24.

25.

access (otherwise it should not be stored). When the probability of access
reaches zero (or approaches zero), the data needs to be purged. Given that
volume of data is one of the most burning issues in the data warehouse
environment, purging data that is no longer useful is one of the more
important aspects of the data warehouse environment.

What total processing capacity requirements are there:
m For initial implementation?

m For the data warehouse environment at maturity?

ISSUE: Granted that capacity requirements cannot be planned down to the
last bit, it is worthwhile to at least estimate how much capacity will be
required, just in case there is a mismatch between needs and what will be
available.

What relationships between major subject areas will be recognized in the
data warehouse environment? Will their implementation do the following:

m (Cause foreign keys to be kept up-to-date?

m Make use of artifacts?

What overhead is required in the building and maintenance of the relation-
ship in the data warehouse environment?

ISSUE: One of the most important design decisions the data warehouse
designer makes is that of how to implement relationships between data in
the data warehouse environment. Data relationships are almost never
implemented the same way in the data warehouse as they are in the opera-
tional environment.

Do the data structures internal to the data warehouse environment make
use of the following:

m Arrays of data?
m Selective redundancy of data?
m Merging of tables of data?

m (Creation of commonly used units of derived data?

ISSUE: Even though operational performance is not an issue in the data
warehouse environment, performance is nevertheless an issue. The
designer needs to consider the design techniques listed previously when
they can reduce the total amount of I/O consumed. The techniques listed
previously are classical physical denormalization techniques. Because data
is not updated in the data warehouse environment, there are very few
restrictions on what can and can’t be done.

Data Warehouse Design Review Checklist 333

26.

27.

28.

The factors that determine when one or the other design technique can be
used include the following:

m The predictability of occurrences of data
m The predictability of the pattern of access of data
m The need to gather artifacts of data

How long will a recovery take? Is computer operations prepared to exe-
cute a full data warehouse database recovery? A partial recovery? Will
operations periodically practice recovery so that it will be prepared in the
event of a need for recovery? What level of preparedness is exhibited by
the following:

m Systems support?

m Applications programming?
m The DBA?

m The DA?

For each type of problem that can arise, is it clear whose responsibility the
problem is?

ISSUE: As in operational systems, the designer must be prepared for the
outages that occur during recovery. The frequency of recovery, the length of
time required to bring the system back up, and the domino effect that can
occur during an outage must all be considered.

Have instructions been prepared, tested, and written? Have these instruc-
tions been kept up-to-date?

What level of preparation is there for reorganization/restructuring of:
Operations?

Systems support?

]
|
m Applications programming?
m The DBA?

m The DA?

Have written instructions and procedures been set and tested? Are they up-
to-date? Will they be kept up-to-date?

ISSUE: (See issues for question 26.)

What level of preparation is there for the loading of a database table by:
m Operations?

m Systems support?

m Applications programming?

334

29.

30.

31.

32.

m The DBA?
m The DA?

Have written instructions and procedures been made and tested? Are they
up-to-date? Will they be kept up-to-date?

ISSUE: The time and resources for loading can be considerable. This esti-

mate needs to be made carefully and early in the development life cycle.

What level of preparation is there for the loading of a database index by:
Operations?

Systems support?

The DBA?
The DA?

ISSUE: (See issue for question 28.)

If there is ever a controversy as to the accuracy of a piece of data in the
data warehouse environment, how will the conflict be resolved? Has own-
ership (or at least source identification) been done for each unit of data in
the data warehouse environment? Will ownership be able to be established
if the need arises? Who will address the issues of ownership? Who will be
the final authority as to the issues of ownership?

-
|
m Applications programming?
-
|

ISSUE: Ownership or stewardship of data is an essential component of suc-
cess in the data warehouse environment. It is inevitable that at some
moment in time the contents of a database will come into question. The
designer needs to plan in advance for this eventuality.

How will corrections to data be made once data is placed in the data ware-
house environment? How frequently will corrections be made? Will correc-
tions be monitored? If there is a pattern of regularly occurring changes,
how will corrections at the source (i.e., operational) level be made?

ISSUE: On an infrequent, nonscheduled basis, there may need to be
changes made to the data warehouse environment. If there appears to be a
pattern to these changes, then the DSS analyst needs to investigate what is
wrong in the operational system.

Will public summary data be stored separately from normal primitive DSS
data? How much public summary data will there be? Will the algorithm
required to create public summary data be stored?

ISSUE: Even though the data warehouse environment contains primitive
data, it is normal for there to be public summary data in the data warehouse

Data Warehouse Design Review Checklist 335

33.

34.

35.

36.

37.

38.

39.

environment as well. The designer needs to have prepared alogical place for
this data to reside.

What security requirements will there be for the databases in the data
warehouse environment? How will security be enforced?

ISSUE: The access of data becomes an issue, especially as the detailed data
becomes summarized or aggregated, where trends become apparent. The
designer needs to anticipate the security requirements and prepare the data
warehouse environment for them.

What audit requirements are there? How will audit requirements be met?

ISSUE: As arule, system audit can be done at the data warehouse level, but
this is almost always a mistake. Instead, detailed record audits are best done
at the system-of-record level.

Will compaction of data be used? Has the overhead of compacting/decom-
pacting data been considered? What is the overhead? What are the savings
in terms of DASD for compacting/decompacting data?

ISSUE: On one hand, compaction or encoding of data can save significant
amounts of space. On the other hand, both compacting and encoding data
require CPU cycles as data is decompacted or decoded on access. The
designer needs to make a thorough investigation of these issues and a delib-
erate trade-off in the design.

Will encoding of data be done? Has the overhead of encoding/decoding
been considered? What, in fact, is the overhead?

ISSUE: (See issue for question 35.)

Will meta data be stored for the data warehouse environment?

ISSUE: Meta data needs to be stored with any archival data as a matter of
policy. There is nothing more frustrating than an analyst trying to solve a
problem using archival data when he or she does not know the meaning of
the contents of a field being analyzed. This frustration can be alleviated by
storing the semantics of data with the data as it is archived. Over time, it is
absolutely normal for the contents and structure of data in the data ware-
house environment to change. Keeping track of the changing definition of
data is something the designer should make sure is done.

Will reference tables be stored in the data warehouse environment?

ISSUE: (See issue for question 37.)

What catalog/dictionary will be maintained for the data warehouse envi-
ronment? Who will maintain it? How will it be kept up-to-date? To whom
will it be made available?

336

40.

41.

42.

43.

44.

ISSUE: Not only is keeping track of the definition of data over time an issue,
but keeping track of data currently in the data warehouse is important as
well.

Will update (as opposed to loading and access of data) be allowed in the
data warehouse environment? (Why? How much? Under what circum-
stances? On an exception-only basis?)

ISSUE: If any updating is allowed on a regular basis in the data warehouse
environment, the designer should ask why. The only update that should
occur should be on an exception basis and for only small amounts of data.
Any exception to this severely compromises the efficacy of the data ware-
house environment.

When updates are done (if, in fact, they are done at all), they should be run
in a private window when no other processing is done and when there is
slack time on the processor.

What time lag will there be in getting data from the operational to the data
warehouse environment? Will the time lag ever be less than 24 hours? If so,
why and under what conditions? Will the passage of data from the opera-
tional to the data warehouse environment be a “push” or a “pull” process?

ISSUE: As a matter of policy, any time lag less than 24 hours should be ques-
tioned. As arule, if a time lag of less than 24 hours is required, it is a sign that
the developer is building operational requirements into the data warehouse.
The flow of data through the data warehouse environment should always be
a pull process, where data is pulled into the warehouse environment when
it is needed, rather than being pushed into the warehouse environment
when it is available.

What logging of data warehouse activity will be done? Who will have
access to the logs?

ISSUE: Most DSS processing does not require logging. If an extensive
amount of logging is required, it is usually a sign of lack of understanding of
what type of processing is occurring in the data warehouse environment.

Will any data other than public summary data flow to the data warehouse
environment from the departmental or individual level? If so, describe it.

ISSUE: Only on rare occasions should public summary data come from
sources other than departmental or individual levels of processing. If much
public summary data is coming from other sources, the analyst should ask
why.

What external data (i.e., data other than that generated by a company’s
internal sources and systems) will enter the data warehouse environment?
Will it be specially marked? Will its source be stored with the data? How

Data Warehouse Design Review Checklist 337

45.

46.

47.

48.

frequently will the external data enter the system? How much of it will
enter? Will an unstructured format be required? What happens if the exter-
nal data is found to be inaccurate?

ISSUE: Even though there are legitimate sources of data other than a com-
pany’s operational systems, if much data is entering externally, the analyst
should ask why. Inevitably, there is much less flexibility with the content
and regularity of availability of external data, although external data repre-
sents an important resource that should not be ignored.

What facilities will exist that will help the departmental and the individual
user to locate data in the data warehouse environment?

ISSUE: One of the primary features of the data warehouse is ease of acces-
sibility of data. And the first step in the accessibility of data is the initial loca-
tion of the data.

Will there be an attempt to mix operational and DSS processing on the
same machine at the same time? (Why? How much processing? How much
data?)

ISSUE: For a multitude of reasons, it makes little sense to mix operational
and DSS processing on the same machine at the same time. Only where
there are small amounts of data and small amounts of processing should
there be a mixture. But these are not the conditions under which the data
warehouse environment is most cost-effective. (See my previous book Data
Architecture: The Information Paradigm [QED/Wiley, 1992] for an in-depth
discussion of this issue.)

How much data will flow back to the operational level from the data ware-
house level? At what rate? At what volume? Under what response time
constraints? Will the flowback be summarized data or individual units of
data?

ISSUE: As a rule, data flows from the operational to the warehouse level to
the departmental to the individual levels of processing. There are some
notable exceptions. As long as not too much data “backflows,” and as long
as the backflow is done in a disciplined fashion, there usually is no problem.
If there is a lot of data engaged in backflow, then a red flag should be raised.

How much repetitive processing will occur against the data warehouse
environment? Will precalculation and storage of derived data save process-
ing time?

ISSUE: It is absolutely normal for the data warehouse environment to have
some amount of repetitive processing done against it. If only repetitive pro-
cessing is done, however, or if no repetitive processing is planned, the
designer should question why:.

338

49.

50.

51.

52.

How will major subjects be partitioned? (By year? By geography? By func-
tional unit? By product line?) Just how finely does the partitioning of the
data break the data up?

ISSUE: Given the volume of data that is inherent to the data warehouse
environment and the unpredictable usage of the data, it is mandatory that
data warehouse data be partitioned into physically small units that can be
managed independently. The design issue is not whether partitioning is to be
done. Instead, the design issue is how partitioning is to be accomplished. In
general, partitioning is done at the application level rather than the system
level.

The partitioning strategy should be reviewed with the following in mind:
Current volume of data

Future volume of data

Current usage of data

Future usage of data

Partitioning of other data in the warehouse

Use of other data

Volatility of the structure of data

Will sparse indexes be created? Would they be useful?

ISSUE: Sparse indexes created in the right place can save huge amounts of
processing. By the same token, sparse indexes require a fair amount of over-
head in their creation and maintenance. The designer of the data warehouse
environment should consider their use.

What temporary indexes will be created? How long will they be kept? How
large will they be?

ISSUE: (See the issue for question 50, except as it applies to temporary
indexes.)

What documentation will there be at the departmental and individual lev-
els? What documentation will there be of the interfaces between the data
warehouse environment and the departmental environment? Between the
departmental and the individual environment? Between the data ware-
house environment and the individual environment?

ISSUE: Given the free-form nature of processing in the departmental and
the individual environments, it is unlikely that there will be much in the way
of available documentation. A documentation of the relationships between
the environments is important for the reconcilability of data.

Data Warehouse Design Review Checklist 339

53.

54.

55.

56.

57.

58.

59.

Will the user be charged for departmental processing? For individual pro-
cessing? Who will be charged for data warehouse processing?

ISSUE: It is important that users have their own budgets and be charged for
resources used. The instant that processing becomes “free,” it is predictable
that there will be massive misuse of resources. A chargeback system instills
a sense of responsibility in the use of resources.

If the data warehouse environment is to be distributed, have the common
parts of the warehouse been identified? How are they to be managed?

ISSUE: In a distributed data warehouse environment, some of the data will
necessarily be tightly controlled. The data needs to be identified up front by
the designer and meta data controls put in place.

What monitoring of the data warehouse will there be? At the table level? At
the row level? At the column level?

ISSUE: The use of data in the warehouse needs to be monitored to deter-
mine the dormancy rate. Monitoring must occur at the table level, the row
level, and the column level. In addition, monitoring of transaction needs to
occur as well.

Will class IV ODS be supported? How much performance impact will there
be on the data warehouse to support class IV ODS processing?

ISSUE: Class IV ODS is fed from the data warehouse. The data needed to
create the profile in the class IV ODS is found in the data warehouse.

What testing facility will there be for the data warehouse?

ISSUE: Testing in the data warehouse is not the same level of importance as
in the operational transaction environment. But occasionally there is a need
for testing, especially when new types of data are being loaded and when
there are large volumes of data.

What DSS applications will be fed from the data warehouse? How much
volume of data will be fed?

ISSUE: DSS applications, just like data marts, are fed from the data ware-
house. There are the issues of when the data warehouse will be examined,
how often it will be examined, and what performance impact there will be
because for the analysis.

Will an exploration warehouse and/or a data mining warehouse be fed
from the data warehouse? If not, will exploration processing be done
directly in the data warehouse? If so, what resources will be required to
feed the exploration/data mining warehouse?

340

60.

61.

62.

63.

ISSUE: The creation of an exploration warehouse and/or a data mining data
warehouse can greatly alleviate the resource burden on the data warehouse.
An exploration warehouse is needed when the frequency of exploration is
such that statistical analysis starts to have an impact on data warehouse
resources.

The issues here are the frequency of update and the volume of data that
needs to be updated. In addition, the need for an incremental update of the
data warehouse occasionally arises.

What resources are required for loading data into the data warehouse on
an ongoing basis? Will the load be so large that it cannot fit into the win-
dow of opportunity? Will the load have to be parallelized?

ISSUE: Occasionally there is so much data that needs to be loaded into the
data warehouse that the window for loading is not large enough. When the
load is too large there are several options:

m (reating a staging area where much preprocessing of the data to be
loaded can be done independently

m Parallelizing the load stream so that the elapsed time required for load-
ing is shrunk to the point that the load can be done with normal pro-
cessing

m Editing or summarizing the data to be loaded so that the actual load is
smaller

To what extent has the midlevel model of the subject areas been created?
Is there a relationship between the different midlevel models?

ISSUE: Each major subject area has its own midlevel data model. As a rule
the midlevel data models are created only as the iteration of development
needs to have them created. In addition, the midlevel data models are
related in the same way that the major subject areas are related.

Is the level of granularity of the data warehouse sufficiently low enough in
order to service all the different architectural components that will be fed
from the data warehouse?

ISSUE: The data warehouse feeds many different architectural compo-
nents. The level of granularity of the data warehouse must be sufficiently
low to feed the lowest level of data needed anywhere in the corporate infor-
mation factory. This is why it is said that the data in the data warehouse is at
the lowest common denominator.

If the data warehouse will be used to store ebusiness and clickstream data,
to what extent does the Granularity Manager filter the data?

Data Warehouse Design Review Checklist s

64.

65.

66.

67.

68.

ISSUE: The Web-based environment generates a huge amount of data. The
data that is generated is at much too low a level of granularity. In order to
summarize and aggregate the data before entering the data warehouse, the
data is passed through a Granularity Manager. The Granularity Manager
greatly reduces the volume of data that finds its way into the data ware-
house.

What dividing line is used to determine what data is to be placed on disk
storage and what data is to be placed on alternate storage?

ISSUE: The general approach that most organizations take in the place-
ment of data on disk storage and data on alternate storage is to place the
most current data on disk storage and to place older data on alternate stor-
age. Typically, disk storage may hold two years’ worth of data, and alternate
storage may hold all data that is older than two years.

How will movement of data to and from disk storage and alternate storage
be managed?

ISSUE: Most organizations have software that manages the traffic to and
from alternate storage. The software is commonly known as a cross-media
storage manager.

If the data warehouse is a global data warehouse, what data will be stored
locally and what data will be stored globally?

ISSUE: When a data warehouse is global, some data is stored centrally and
other data is stored locally. The dividing line is determined by the use of the
data.

For a global data warehouse, is there assurance that data can be trans-
ported across international boundaries?

ISSUE: Some countries have laws that do not allow data to pass beyond
their boundaries. The data warehouse that is global must ensure that it is not
in violation of international laws.

For ERP environments, has it been determined where the data warehouse
will be located—inside the ERP software or outside the ERP environment?

ISSUE: Many factors determine where the data warehouse should be
placed:

m Does the ERP vendor support data warehouse?
m Can non-ERP data be placed inside the data warehouse?

m What analytical software can be used on the data warehouse if the data
warehouse is placed inside the ERP environment?

m [f the data warehouse is placed inside the ERP environment, what
DBMS can be used?

342 | 0 T

69. Can alternate storage be processed independently?

ISSUE: Older data is placed in alternate storage. It is often quite useful to be
able to process the data found in alternate storage independently of any con-
sideration of data placed on disk storage.

70. Is the development methodology that is being used for development a spi-
ral development approach or a classical waterfall approach?

ISSUE: The spiral development approach is always the correct develop-
ment approach for the data warehouse environment. The waterfall SDLC
approach is never the appropriate approach.

71. Will an ETL tool be used for moving data from the operational environment
to the data warehouse environment, or will the transformation be done
manually?

ISSUE: In almost every case, using a tool of automation to transform data
into the data warehouse environment makes sense. Only where there is a
very small amount of data to be loaded into the data warehouse environ-
ment should the loading of the data warehouse be done manually.

Summary

Design review is an important quality assurance practice that can greatly
increase the satisfaction of the user and reduce development and maintenance
costs. Thoroughly reviewing the many aspects of a warehouse environment
prior to building the warehouse is a sound practice.

The review should focus on both detailed design and architecture.

APPENDIX

DEVELOPING OPERATIONAL SYSTEMS—METH 1

M1—Initial Project Activities

PRECEDING ACTIVITY: Decision to build an operational system.
FOLLOWING ACTIVITY: Preparing to use existing code/data.
TIME ESTIMATE: Indeterminate, depending on size of project.
NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once.

SPECIAL CONSIDERATIONS: Because of the ambiguity of this step, it tends to
drag out interminably. As long as 90 percent (or even less) of the system is
defined here, the system development should continue into the next phase.

DELIVERABLE: Raw system requirements.

Interviews. The output of interviews is the “softcore” description of what the
system is to do, usually reflecting the opinion of middle management. The for-
mat of the output is very free-form. As a rule, the territory covered by inter-
views is not comprehensive.

344 APPENDIX

Data gathering. The output from this activity may come from many sources.
In general, requirements-usually detailed-that are not caught elsewhere are
gathered here. This is a free-form, catchall, requirements-gathering activity, the
results of which fill in the gap for other requirements-gathering activities.

JAD (Joint Application Design) session output. The output from these
activities is the group “brainstorm” synopsis. Some of the benefits of require-
ments formulation in a JAD session are the spontaneity and flow of ideas, and
the critical mass that occurs by having different people in the same room focus-
ing on a common objective. The output of one or more JAD sessions is a for-
malized set of requirements that collectively represent the end users’ needs.

Strategic business plan analysis. If the company has a strategic business
plan, it makes sense to reflect on how the plan relates to the requirements of
the system being designed. The influence of the strategic business plan can
manifest itself in many ways-in setting growth figures, in identifying new lines
of business, in describing organizational changes, and so forth. All of these fac-
tors, and more, shape the requirements of the system being built.

Existing systems shape requirements for a new system profoundly. If related,
existing systems have been built, at the very least the interface between the
new set of requirements and existing systems must be identified.

Conversion, replacement, parallel processing, and so forth are all likely topics.
The output of this activity is a description of the impact and influence of exist-
ing systems on the requirements for the system being developed.

PARAMETERS OF SUCCESS: When done properly, there is a reduction in
the ambiguity of the system, the scope of the development effort is reasonably
set, and the components of the system are well organized. The political as well
as the technical components of the system should be captured and defined.

M2-—Using Existing Code/Data

PRECEDING ACTIVITY: System definition.
FOLLOWING ACTIVITY: Sizing, phasing.

TIME ESTIMATE: Done very quickly, usually in no more than a week in even
the largest of designs.

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once.

SPECIAL CONSIDERATIONS: This step is one of the best ways to ensure code
reusability and data reusability. This step is crucial to the integration of the
environment.

APPENDIX 345

In an architected environment, it is incumbent on every project to do the fol-
lowing:

m Use as much existing code/data as possible.

m Prepare for future projects that will use code and data to be developed in
the current project. The output from this step is an identification of exist-
ing code/data that can be reused and the steps that need to be taken for
future processing.

If existing code/data is to be modified, the modifications are identified as a reg-
ular part of the system development requirements. If existing code/data is to be
deleted, the deletion becomes a part of the specifications. If conversion of
code/data are to be done, the conversion becomes a component of the devel-
opment effort.

PARAMETERS OF SUCCESS: To identify code/data that already exists that
can be built on; to identify what needs to be built to prepare for future efforts.

M3—Sizing, Phasing

PRECEDING ACTIVITY: Using existing code/data.
FOLLOWING ACTIVITY: Requirements formalization; capacity analysis.

TIME ESTIMATE: This step goes rapidly, usually in a day or two, even for the
largest of designs.

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once, then revisited for
each continuing phase of development.

DELIVERABLE: Identification of phases of development.

After the general requirements are gathered, the next step is to size them and
divide development up into phases. If the system to be developed is large, it
makes sense to break it into development phases. In doing so, development is
parceled out in small, manageable units. Of course, the different development
phases must be organized into a meaningful sequence, so that the second phase
builds on the first, the third phase builds on the first and second, and so on.

The output from this step is the breakup of general requirements into doable,
manageable phases, if the requirements are large enough to require a breakup
at all.

PARAMETERS OF SUCCESS: To continue the development process in
increments that are both economic and doable (and within the political context
of the organization as well).

346 APPENDIX

M4—Requirements Formalization

PRECEDING ACTIVITY: Sizing, phasing.
FOLLOWING ACTIVITY: ERD specification; functional decomposition.

TIME ESTIMATE: Indeterminate, depending on size of system, how well the
scope of the system has been defined, and how ambiguous the design is up to
this point.

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once per phase of
development.

DELIVERABLE: Formal requirements specification.

Once the requirements have been gathered, sized, and phased (if necessary),
the next step is to formalize them. In this step, the developer ensures the fol-
lowing:

m The requirements that have been gathered are complete, as far as it is rea-
sonably possible to gather them.

m The requirements are organized.

The requirements are readable, comprehensible, and at a low enough level
of detail to be effective.

The requirements are not in conflict with each other.
The requirements do not overlap.

Operational and DSS requirements have been separated.

The output from this step is a formal requirements definition that is ready
to go to detailed design.

PARAMETERS OF SUCCESS: A succinct, organized, readable, doable, quan-
tified, complete, usable set of requirements that is also a document for devel-
opment.

CA—Capacity Analysis

PRECEDING ACTIVITY: Sizing, phasing.
FOLLOWING ACTIVITY: ERD specification; functional decomposition.

TIME ESTIMATE: Depends on the size of the system being built, but with esti-
mating tools and a focused planner, two or three weeks is a reasonable estimate
for a reasonably sized system.

APPENDIX 347

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once per phase of
development.

SPECIAL CONSIDERATIONS: The capacity planning function has a history of
confusing issues and including extraneous factors that do not merit special
attention. It is important to keep the capacity planning portion of the develop-
ment process focused and to the point. Otherwise, the exercise can become a
roadblock to progress.

The gross amounts of resources to be consumed by the project being analyzed
need to be estimated in this early phase of development. In particular, the fol-
lowing needs to be considered:

m DASD consumption

m Software requirements (including system software, utilities, special custom
code, network software, interface software)

m CPU consumption

m /O utilization

m Main memory requirements

m Network/channel utilization

Not only are raw requirements analyzed, but the arrival rate of transactions,

peak-period processing, patterns of processing, response time requirements,

availability requirements, and mean time to failure requirements are factored in

as well.

In addition, if any hardware/software must be ordered, the lead time and the
“burn in” time must be accounted for to ensure that proper resources will be in
place in time for the application being reviewed.

The output of this phase of development is the assurance that the resources
needed to be in place are, in fact, in place.

PARAMETERS OF SUCCESS: No surprises when it comes to resources
being in place when needed, the lead time needed to acquire resources, and the
amount of resources needed.

PREQ1—Technical Environment
Definition

PRECEDING ACTIVITY: Establishment of the information processing environ-
ment.

FOLLOWING ACTIVITY: Sizing, phasing.

348 APPENDIX

TIME ESTIMATE: NA
NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: NA

SPECIAL CONSIDERATIONS: On occasion, it is necessary to build an applica-
tion system from scratch, including defining the technical environment. If this
is the case, the considerations of technical definition are outside the bound-
aries of the data-driven development methodology.

In order to proceed, it is necessary that the technical environment be defined.
If the technical environment is not defined at this point, the result will be much
“thrashing.” Simply stated, detailed design cannot be meaningfully done until
the technical environment is defined.

Certain elements of design beyond this point depend on one or the other of the
technical cornerstones previously identified. At the least, the following should
be established:

The hardware platform(s) that will be used
The operating system(s) that will be used
The DBMS(s) that will be used

The network software to be used

The language(s) to be used for development

In addition to whatever hardware, software, and networking will be used, it is
helpful to establish the following as well:

m Node residency definition (for network systems)

m Management of the system of record

PARAMETERS OF SUCCESS: A firm, workable, technical definition that will
meet the needs of the system being developed.

D1—ERD (Entity Relationship

Diagram)
PRECEDING ACTIVITY: Requirements formalization.
FOLLOWING ACTIVITY: Data item set specification.

TIME ESTIMATE: For even the largest of systems, two weeks suffice if the
designers know what they are doing. If they don’t, the amount of time required
here is indeterminate.

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once.
DELIVERABLE: Identification of major subject areas.

APPENDIX 349

From the general set of formal requirements comes the need to identify the
major subjects that will make up the system and the relationship of those major
subjects. As a rule, the major subject is at the highest level of abstraction.

Typical major subjects are CUSTOMER, PRODUCT, TRANSACTION, and so
forth. The relationships of the major subjects are identified, as well as the car-
dinality of the relationship.

The output of this step is the identification of the major subjects that will make
up the system, as well as their relationships to each other.

PARAMETERS OF SUCCESS: All major subjects are identified so that there
are no conflicts in domain; they are identified at the highest level of abstraction.

One major parameter of success is that only primitive data be modeled.
Another parameter of success is that the scope of the model be defined prior to
starting the ERD modeling.

D2-DIS (Data Item Sets)

PRECEDING ACTIVITY: ERD definition.
FOLLOWING ACTIVITY: Performance analysis; data store definition.
TIME ESTIMATE: As long as one month per subject area.

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once for each subject
area.

Each subject is further broken down-in terms of level of detail-into a dis (data
item set). The dis contains attributes of data, the grouping of attributes, and
keys. In addition, “type of” data is identified. Other structures of data here
include connectors-representations of relationships-and secondary groupings
of data. The output from this step is the fleshing out of the subject areas identi-
fied in D1.

PARAMETERS OF SUCCESS: All types of the major subject are identified;
all connectors are correctly identified; all relationships are identified by a con-
nector; all attributes are identified; all attributes are grouped with other attrib-
utes that share the same relationship to the key of the grouping of data; all
multiply occurring groups of attributes are separated from singularly occurring
groups of attributes; all recursive relationships are designed in the most general
case necessary. Only primitive data is found here. Derived data is identified,
stored, and managed elsewhere.

350 APPENDIX

D3—Performance Analysis

PRECEDING ACTIVITY: Data item set development.

FOLLOWING ACTIVITY: Physical database design.

TIME ESTIMATE: One week per subject area, unless the subject area is huge.
NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once per subject area.

SPECIAL CONSIDERATIONS: This step does not need to be done in the case of
small amounts of data and/or small amounts of processing.

This step is performed if the volume of data, the volume of processing, the traf-
fic over the network, the growth of data and processing, or the peak period of
processing will produce significant amounts of activity. If none of those factors
will occur, this step is not done.

In this step, the issue of physical denormalization of data is addressed. Specifi-
cally, the design practices of merging tables, selective introduction of redun-
dancy, creating popular pools of derived data, creating arrays of data, and
further separation of data where there is a wide disparity in the probability of
its access are considered.

If this activity is done at all, the output reflects a much more streamlined
design, with little or no loss of the benefits of normalization of data.

PARAMETERS OF SUCCESS: A design that will be efficient to access and
update, in terms of both data and programs that access and update data. Done
properly, this step ensures efficient resource utilization.

D4—Physical Database Design

PRECEDING ACTIVITY: Performance analysis.

FOLLOWING ACTIVITY: Pseudocode development.

TIME ESTIMATE: One day per table to be designed.

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once per table.

SPECIAL CONSIDERATIONS: If the input to this step is incorrect or ambigu-
ous, the amount of work required here can be much more than that estimated.

DELIVERABLE: Tables, databases physically designed.

Now the output from D3 and/or D4 is used to produce a physical database
design. Some of the characteristics of the output include the following:

APPENDIX 351

Indexing

Physical attribution of data
Partitioning strategies

Designation of keys
Clustering/interleaving
Management of variable-length data
NULL/NOT NULL specification
Referential integrity

The output of this step is the actual specification of the database to the DBMS
or whatever data management software/conventions are adopted.

PARAMETERS OF SUCCESS: Done properly, this stage of analysis trans-
forms all the considerations of logical design of data, performance, update,
access, availability, reorganization, restructuring of data, and so on, into a
workable database design.

P1—Functional Decomposition

PRECEDING ACTIVITY: Requirements formalization.
FOLLOWING ACTIVITY: Context level 0 specification.

TIME ESTIMATE: Depends on the size of the system and degree of ambiguity
(and how firmly and unambiguously the scope has been established). As a rule,
two weeks for a reasonably sized system is adequate.

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once per phase of
development.

From the requirements document comes the functional decomposition. The
functional decomposition merely takes the broad function accomplished by the
system and breaks it down into a series of successively smaller functions
(down to a level sometimes called the primitive level).

The output of this process is a large functional decomposition describing the
different activities to be performed from a high level to a low level.

PARAMETERS OF SUCCESS: Solely reflected in this section are the func-
tions to be designed. Factored into the step are the considerations of other
functions that have served or will serve as building blocks. Done properly, this
step produces a document that is comprehensible, organized, readable, and
complete.

352 APPENDIX

P2—Context Level 0

PRECEDING ACTIVITY: Functional decomposition.

FOLLOWING ACTIVITY: Context level 1-n specification.

TIME ESTIMATE: Three days.

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once per phase.

Context level 0 of the functional decomposition describes, at the highest level
of abstraction, the major activities to be developed. Context level 0 for process
specification corresponds to the ERD in data modeling.

PARAMETERS OF SUCCESS: Done correctly, only the major activities of
the system and how they relate are identified in this document.

P3—Context Level 1-n

PRECEDING ACTIVITY: Context level 0 specification.

FOLLOWING ACTIVITY: DFD specification.

TIME ESTIMATE: One day per function.

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once per function.

DELIVERABLE: Complete functional decomposition. (Note: Multiple steps
contribute to this deliverable.)

The remaining levels of the functional decomposition describe the more
detailed activities that occur. Context levels 1-n correspond, in terms of
process design, to the data item set (dis) in terms of data design.

PARAMETERS OF SUCCESS: When this step has been done properly, all
major activities are broken down to a primitive level. The breakdown is orderly,
organized, complete, and in accordance with the flow of activity.

P4—Data Flow Diagram (dfd)

PRECEDING ACTIVITY: Context level 1-n specification.

FOLLOWING ACTIVITY: Algorithmic specification.

TIME ESTIMATE: One hour per activity (at a primitive level).
NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once per activity.
DELIVERABLE: Data flow diagram for each process.

APPENDIX

353

At each context level n-the primitive level-a dfd is drawn. The dfd indicates the
input to a process, the output of a process, the data stores needed to establish
the process, and a brief description of the process. A dfd may be done for con-
text levels higher than 7 if it turns out that a program or process is likely to be

written for that context level.

PARAMETERS OF SUCCESS: The input and output for every primitive activ-
ity is identified, and the flow of activity is identified as well. Data stores are out-

lined, and the work to be done by each activity is specified.

P5—Algorithmic Specification;
Performance Analysis

PRECEDING ACTIVITY: DFD specification.
FOLLOWING ACTIVITY: Pseudocode.

TIME ESTIMATE: Varies from five minutes to two days per activity at the prim-

itive level that must be specified.

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once per activity.

The processes that are defined by the dfd for primitives are further broken
down into detailed algorithmic specification. In other words, in this step, the

actual processing to occur step by step is outlined.

In addition, if performance is to be an issue, the effect of performance on pro-
gram design is factored in. Such design techniques as the following are consid-

ered here:

m Breaking a long-running program into a series of shorter programs
m Requiring a program to access a smaller amount of data

m Shortening the time a unit of data is locked

m Changing a lock from update potential to access only

PARAMETERS OF SUCCESS: Algorithmic specification is done correctly
when all details needed for specification are identified, and only details needed
for specification are identified, one step at a time, including all possibilities. In

addition, conformance to the standard work unit (SWU) is ensured here.

P6—Pseudocode

PRECEDING ACTIVITY: Algorithmic specification; physical database design;

data store design.

FOLLOWING ACTIVITY: Coding.

354 APPENDIX

TIME ESTIMATE: Varies (see previous activity).

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once per activity (at
the primitive level).

The algorithms and program specifications are further refined into
pseudocode. The designer ensures that all needed data for processing is avail-
able. All variables used in calculations, transformations, updates, and so on are
identified here. Any loose ends are identified. Performance at the design level is
considered here. The output of this activity is coding specifications ready for
actual code.

PARAMETERS OF SUCCESS: The final pass at programming specification
includes the following:

m Completeness
Order of execution
All required cases

|
|
m All contingencies, including error handling and exception conditions
|

Structure of coding

P7—Coding

PRECEDING ACTIVITY: Pseudocode.

FOLLOWING ACTIVITY: Walkthrough.

TIME ESTIMATE: Depends, from one day per activity to two weeks per activity.
NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once per activity.
DELIVERABLE: Source code.

The pseudocode is translated into source code. If the data has been designed
properly, and if the specification of pseudocode has been thorough, this step
goes smoothly. The output of this step is source code.

PARAMETERS OF SUCCESS: The complete and efficient translation of
pseudocode into code, including inline documentation. Done properly, all
requirements previously identified are satisfied by this point.

P8—Walkthrough

PRECEDING ACTIVITY: Coding.
FOLLOWING ACTIVITY: Compilation.

APPENDIX 355

TIME ESTIMATE: One hour per activity.
NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once per activity.

The walkthrough is the verbal explanation of code in front of peers. The intent
is to find coding errors (or any other kind) before testing. The output of this
step is code that has been publicly aired and is as free from error as possible.

PARAMETERS OF SUCCESS: The detection of errors prior to coding. When
this step has been done properly, there will be very few errors left to be found
by other means.

P9—Compilation

PRECEDING ACTIVITY: Walkthrough.
FOLLOWING ACTIVITY: Unit testing; stress testing.
TIME ESTIMATE: One hour or less per activity.

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Until a clean compile is
achieved.

Source code is run through the compiler. All errors found in compilation are
corrected. The output of this step is compiled code, ready to be tested.

PARAMETERS OF SUCCESS: Compiled code that is ready for testing.

P10—Unit Testing

PRECEDING ACTIVITY: Compilation.

FOLLOWING ACTIVITY: Implementation.

TIME ESTIMATE: Varies widely.

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Varies.

Compiled code is tested. There are several levels of unit testing. The simplest
(lowest) level of unit testing occurs when the compiled module is tested by
itself, ensuring that the function it does is satisfactory. Next, the compiled code
is added to other code with which the compiled code will have to work. New
levels of unit testing occur in order to ensure the integration of the compiled
code with other modules that will be interfaced. A third level of unit testing
occurs when major groups of modules are ready to be tested together.

The output of this step is tested code, ready for execution.

356

APPENDIX

M1 interviews
data gathering
JAD sessions
strategic plan
existing systems
M2 -
use existing
code, data
PREQ1 technical
environment M3 sizing,
established phasing
[
[1
A
M4 requirements capacity ¢
formalization analysis
T : GA1
[1
P11 functional high level
decomposition review
]
P2 D2 | pis
context level 0
P3 D3| performance
context level 1-n)
analysis
DFD (for each component) —l
° o hysical design
| AT | data st i :
r P5 | igorithmi ata store database review
algorithmic specs; initi .
9 p . definition design
e performance analysis
a |
¢ ! pseudocode
" |
P7 di
p coding
r [M mainline
o P8 walkthrough PREQ prerequisite
c D data analysis
e P9 compilation P process analysis
s GA general activity
s P10 | JA joint activity
testing stress test ST ST stress test
[—— CA capacity analysis
P11 implementation

Figure A.1

METH 1.

o c o O 0 o O =

-~ 0O ® —

APPENDIX 357

PARAMETERS OF SUCCESS: When executed properly, the code that passes
on to the next step has program logic correctly specified. Furthermore, all con-
ditions are tested before code is passed to the next stage, including error and
exception conditions.

P11—Implementation

PRECEDING ACTIVITY: Unit test; stress test.
FOLLOWING ACTIVITY: NA

TIME ESTIMATE: NA

DELIVERABLE: A system that satisfies specifications.

There are many activities in implementation. To some extent, implementation
is an ongoing activity. Some of the typical activities of implementation are
these:

m Training, indoctrination

m [oading of programs

Initial loading of data
Conversions of data, if necessary
Monitoring utilities established

Writing documentation

Recovery, reorg procedures established

The output of this step (if there really is an end to the step) is a satisfactorily
running system.

PARAMETERS OF SUCCESS: When this step is done, the result is a happy
user.

DATA WAREHOUSE DEVELOPMENT—METH 2

DSS1—Data Model Analysis

PRECEDING ACTIVITY: The commitment to build a data warehouse.

FOLLOWING ACTIVITY: Subject area analysis; breadbox analysis; data ware-
house design.

358 APPENDIX

TIME ESTIMATE: Varies widely, depending on the status and quality of the data
model.

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once.

At the outset, a data model needs to have been defined. The data model needs
to have done the following:

m [dentified the major subject areas
m (learly defined boundaries of the model

m Separated primitive from derived data

The following need to be identified for each subject area:
Keys

Attributes

Groupings of attributes

Relationships among groupings of attributes

Multiply occurring data

“Type of” data

The output from this step is a confirmation that the organization has built a
solid data model. If the model does not meet the criteria specified, then
progress should be halted until the model is brought up to standards of quality.

PARAMETERS OF SUCCESS: The data model will have the following:
m Major subjects identified

m FEach major subject with its own separate definition of data, including:
m Subtypes of data
m Attributes of data
m (Clearly defined relationships of data
m Defined groupings of data
m Defined keys

In addition, each group of data that will go into the data warehouse will have
DSS data and operational-only data delineated. All DSS data will have its own
time-variant key specified, usually as the lower order of a higher key.

DSS2—Breadbox Analysis

PRECEDING ACTIVITY: Data model analysis.
FOLLOWING ACTIVITY: Data warehouse database design.

APPENDIX 359

TIME ESTIMATE: From one day to two weeks, depending on how well the
scope has been defined, how well the data model has been defined, etc.

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once.
DELIVERABLE: Granularity analysis.

Once the model has been analyzed and brought up to a level of sufficient qual-
ity, the next step is to do breadbox analysis. Breadbox analysis is a sizing-in
terms of gross estimates-of the DSS environment. If volume of data is going to
be a problem, it is important to know that at the outset. Breadbox analysis sim-
ply projects-in raw terms-how much data the data warehouse will hold.

The output of breadbox analysis is simple-if the data warehouse is to contain
large amounts of data, then multiple levels of granularity need to be considered.
If the data warehouse is not to contain a massive amount of data, then there is
no need to plan the design for multiple levels of granularity.

PARAMETERS OF SUCCESS: An estimate of the amount of data-in terms of
number of rows-both on the one-year horizon and on the five-year horizon for
the entire data warehouse environment, is the result of the process. Based on
the results of the estimate, the issue of whether different levels of granularity
are needed is decided. If multiple levels of granularity are needed, defining
exactly what those levels are is a part of the output of this step.

DSS3—Technical Assessment

PRECEDING ACTIVITY: The commitment to build a data warehouse.
FOLLOWING ACTIVITY: Technical environment preparation.

TIME ESTIMATE: One week.

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once.
DELIVERABLE: Technical environment assessment.

The technical requirements for managing the data warehouse are very different
from the technical requirements and consideration for managing data and pro-
cessing in the operational environment. That is why a separate, central store of
DSS data is so popular.

PARAMETERS OF SUCCESS: When executed properly, the technical defini-
tion of the data warehouse satisfies the following criteria:

m Ability to manage large amounts of data

m Ability to allow data to be accessed flexibly

m Ability to organize data according to a data model
|

Ability both to receive and to send data to a wide variety of technologies

360 APPENDIX

m Ability to have data periodically loaded en masse

m Ability to access data a set at a time or a record at a time

DSS4—Technical Environment
Preparation

PRECEDING ACTIVITY: Technical assessment.

FOLLOWING ACTIVITY: Data warehouse design; population.
TIME ESTIMATE: One week to one month.

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once.

Once the architectural configuration for the data warehouse has been estab-
lished, the next step is to technically identify how the configuration can be
accommodated. Some of the typical issues that must be addressed here are the
following:

m The amount of DASD required

m What link-either across the network or into the network-will be required
m The volume of processing anticipated
|

How to minimize and/or alleviate conflicts of processing between compet-
ing access programs

The volume of traffic that will be generated from the technology that con-
trols the data warehouse

m The nature of traffic-either short or long bursts-generated from the tech-
nology that controls the data warehouse

PARAMETERS OF SUCCESS: When this step has been done properly, there
are no technical barriers to success. The technical components that should
have been installed, allocated, “burned in,” and ready to receive data include
the following:

m The network

m DASD

m The operating system managing DASD

m The interface to and from the warehouse

m The software used to manage the data warehouse
-

The data warehouse

APPENDIX 361

DSS5—Subject Area Analysis

PRECEDING ACTIVITY: Data model analysis.
FOLLOWING ACTIVITY: Source system analysis.
TIME ESTIMATE: One day.

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once per population
project.

DELIVERABLE: Which subject area to build next.

Now the subject area to be populated is selected. The first subject area to be
selected must be large enough to be meaningful and small enough to be imple-
mented. If by some chance a subject area is truly large and complex, a subset of
the subject area may be chosen for implementation. The output from this step
is a scope of effort in terms of a subject.

PARAMETERS OF SUCCESS: The output from this phase when done cor-
rectly is a definition of what data is to be populated next. In the first few popu-
lations, small subjects are usually selected. In later populations, larger subjects,
or even subsets of subjects, are selected. When properly done, the subject
selected for population meets the needs of the current stage of development of
the data warehouse.

DSS6—Data Warehouse Design

PRECEDING ACTIVITY: Data model analysis; source system analysis; bread-
box analysis.

FOLLOWING ACTIVITY: Program specification.

TIME ESTIMATE: One week to three weeks.

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once.
DELIVERABLE: Physical database design for the warehouse.

The data warehouse is designed based on the data model. Some of the charac-
teristics of the ultimate design include the following:

m An accommodation of the different levels of granularity, if indeed there are
multiple levels of granularity

m An orientation of data to the major subjects of the corporation

m The presence of only primitive data and publicly derived data

362 APPENDIX

m The absence of non-DSS data
m Time variancy of every record of data

m Physical denormalization of data where applicable (i.e., where perfor-
mance warrants)

m (Creation of data artifacts where data that once was in the operational envi-
ronment is brought over to the data warehouse

The output of this step is a physical database design of the data warehouse.
Note that not all of the data warehouse needs to be designed in detail at the out-
set. It is entirely acceptable to design the major structures of the data ware-
house initially, then fill in the details at a later point in time.

PARAMETERS OF SUCCESS: When this step is properly done, the result is
a data warehouse that has a manageable amount of data that can be loaded,
accessed, indexed, and searched in a reasonably efficient fashion.

DSS7—Source System Analysis

PRECEDING ACTIVITY: Subject area analysis.

FOLLOWING ACTIVITY: Program specification; data warehouse design.

TIME ESTIMATE: One week per subject area.

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once per subject area.
DELIVERABLE: Identification of the system of record.

Once the subject to be populated is identified, the next activity is to identify the
source data for the subject in the existing systems environment. It is absolutely
normal for there to be a variety of sources of data for DSS data. It is at this point
that the issues of integration are addressed. The following represents the issues
to be addressed here:

m Key structure/key resolution as data passes from the operational environ-
ment to the DSS environment

m Attribution
m What to do when there are multiple sources to choose from
m What to do when there are no sources to choose from

m What transformations-encoding/decoding, conversions, etc.-must be
made as data is selected for transport to the DSS environment

m How time variancy will be created from current value data

APPENDIX 363

m Structure-how the DSS structure will be created from the operational
structure

m Relationships-how operational relationships will appear in the DSS envi-
ronment

m The output of this step is the mapping of data from the operational envi-
ronment to the DSS environment.

PARAMETERS OF SUCCESS: When done properly, the source system that
serves the needs of the data warehouse uses data that is timely, complete, accu-
rate, near to the source, easy to access, and that conforms to the structure of
data warehouse needs.

DSS8—Specifications

PRECEDING ACTIVITY: Source system analysis; data warehouse design.
FOLLOWING ACTIVITY: Programming.
TIME ESTIMATE: One week per extract/integration program.

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once for each program
that needs to be written.

Once the interface between the operational and the DSS environments has
been outlined, the next step is to formalize it in terms of program specifica-
tions. Some of the major issues here include the following:

m How do I know what operational data to scan?
m [s the operational data time stamped?
m [s there a delta file?
m Are there system logs/audit logs that can be used?

m (Can existing source code and data structure be changed to create a delta
file?

m Do before and after image files have to be rubbed together?
m How do I store the output, once scanned?

m [s the DSS data preallocated, preformatted?

m [s data appended?

m [s data replaced?

m Are updates in the DSS environment made?

The output from this step is the actual program specifications that will be used
to bring data over from the operational environment to the data warehouse.

364 APPENDIX

PARAMETERS OF SUCCESS: When properly done, this step allows the
extract and integration of data to be done as efficiently and as simply as possi-
ble. (Seldom is this a smooth, simple process.)

DSS9—Programming

PRECEDING ACTIVITY: Specification.

FOLLOWING ACTIVITY: Population.

TIME ESTIMATE: One week per extract/integration program.

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: Once per program.

DELIVERABLE: Extract, integration, time-perspective program transforma-
tion.

This step includes all the standard activities of programming, such as the fol-
lowing:

m Development of pseudocode

m (Coding

m Compilation

m Walkthroughs

m Testing-unit, stress-in its many forms

PARAMETERS OF SUCCESS: When done properly, code that is generated
out of this step is efficient, documented, able to be changed easily, accurate,
and complete.

DSS10—Population

PRECEDING ACTIVITY: Programming; technical environment preparation.
FOLLOWING ACTIVITY: Usage of the data warehouse.

TIME ESTIMATE: NA

NORMALLY EXECUTED ONCE OR MULTIPLE TIMES: NA
DELIVERABLE: Usable data warehouse.

This step entails nothing more than the execution of the DSS programs previ-
ously developed. The issues addressed here are the following:

m Frequency of population

m Purging populated data

APPENDIX 365

for each subject

bss1 DSS5 | |DSS7 | |DSS8 | |DSSQ | |DSS1O
data model subject source specs programming population
analysis area [~] system m m u
analysis
DSS2 DSSG\ /
breadbox data warehouse
analysis database design
DSS3 DSS4
technical technical
assessment environment
preparation

Figure A2 METH 2.

m Aging populated data (i.e., running tallying summary programs)
m Managing multiple levels of granularity

m Refreshing living sample data (if living sample tables have been built)
The output of this step is a populated, functional data warehouse.

PARAMETERS OF SUCCESS: When done properly, the result is an accessi-
ble, comprehensible warehouse that serves the needs of the DSS community.

HEURISTIC PROCESSING—METH 3

The third phase of development in the architected environment is the usage of
data warehouse data for the purpose of analysis. Once the data in the data
warehouse environment is populated, usage may commence.

There are several essential differences between the development that occurs at
this level and development in other parts of the environment. The first major
difference is that at this phase the development process always starts with data,
that is, the data in the data warehouse. The second difference is that require-
ments are not known at the start of the development process. The third differ-
ence (which is really a byproduct of the first two factors) is that processing is
done in a very iterative, heuristic fashion. In other types of development, there

366 APPENDIX

— for departmental, DEPT1

repetitive reports standard requirements
development for reports

— for heuristic analytical
processing

for each analysis

INDA IND2 | |IND4 | |IND5 | |IND6

determine data program to analyze data answer institutionalize?
needed | |extract data question

IND3

program to
merge,
analyze,
combine with
other data

Figure A.3 METH 3.

is always a certain amount of iteration. But in the DSS component of develop-
ment that occurs after the data warehouse is developed, the whole nature of
iteration changes. Iteration of processing is a normal and essential part of the
analytical development process, much more so than it is elsewhere.

The steps taken in the DSS development components can be divided into two
categories-the repetitively occurring analysis (sometimes called the “depart-
mental” or “functional” analysis) and the true heuristic processing (the “indi-
vidual” level).

Figure A.3 shows the steps of development to be taken after the data ware-
house has begun to be populated.

HEURISTIC DSS DEVELOPMENT—METH 4

DEPT1-Repeat Standard Development-For repetitive analytical processing
(usually called delivering standard reports), the normal requirements-driven
processing occurs. This means that the following steps (described earlier) are
repeated:

M1—interviews, data gathering, JAD, strategic plan, existing systems

APPENDIX 367

M2—sizing, phasing

M3—requirements formalization

P1—functional decomposition

P2—context level 0

P3—context level 1-n

P4—dfd for each component

P5—algorithmic specification; performance analysis
P6—pseudocode

P7—coding

P8—walkthrough

P9—compilation

P10—testing

Pll—implementation

In addition, at least part of the following will occur at the appropriate time:
GAl—high-level review

GAZ2—design review

It does not make sense to do the data analysis component of development
because the developer is working from the data warehouse.

The output of this activity are reports that are produced on a regular basis.

PARAMETERS OF SUCCESS: When done properly, this step ensures that
regular report needs are met. These needs usually include the following:

m Regulatory reports

m Accounting reports

m Key factor indicator reports
m Marketing reports

m Sales reports

Information needs that are predictable and repetitive are met by this function.

NOTE: For highly iterative processing, there are parameters of success, but
they are met collectively by the process. Because requirements are not defined
a priori, the parameters of success for each iteration are somewhat subjective.

368 APPENDIX

IND1—Determine Data Needed

At this point, data in the data warehouse is selected for potential usage in the
satisfaction of reporting requirements. While the developer works from an edu-
cated-guess perspective, it is understood that the first two or three times this
activity is initiated, only some of the needed data will be retrieved.

The output from this activity is data selected for further analysis.

IND2—Program to Extract Data

Once the data for analytical processing is selected, the next step is to write a
program to access and strip the data. The program written should be able to be
modified easily because it is anticipated that the program will be run, modified,
then rerun on numerous occasions.

DELIVERABLE: Data pulled from the warehouse for DSS analysis.

IND3—Combine, Merge, Analyze

After data has been selected, it is prepared for analysis. Often this means edit-
ing the data, combining it with other data, and refining it.

Like all other heuristic processes, it is anticipated that this program be written
so that it is easily modifiable and able to be rerun quickly. The output of this
activity is data fully usable for analysis.

DELIVERABLE: Analysis with other relevant data.

IND4—Analyze Data

Once data has been selected and prepared, the question is “Do the results
obtained meet the needs of the analyst?” If the results are not met, another iter-
ation occurs. If the results are met, then the final report preparation is begun.

DELIVERABLE: Fulfilled requirements.

IND5—Answer Question

The final report that is produced is often the result of many iterations of pro-
cessing. Very seldom is the final conclusion the result of a single iteration of
analysis.

APPENDIX 369

IND6—Institutionalization

The final issue to be decided is whether the final report that has been created
should be institutionalized. If there is a need to run the report repetitively, it
makes sense to submit the report as a set of requirements and to rebuild the
report as a regularly occurring operation.

Summary

How the different activities relate to each other and to the notion of data archi-
tecture are described by the diagram shown in Figure A.4.

Selected Topics

The best way to describe the data-driven nature of the development methodol-
ogy is graphically. Figure A.5 shows that the data model is at the heart of the
data-driven methodology.

The data model relates to the design of operational data, to the design of data in
the data warehouse, to the development and design process for operational
data, and to the development and design process for the data warehouse. Fig-
ure A.5 shows how the same data model relates to each of those activities and
databases.

The data model is the key to identifying commonality across applications. But
one might ask, “Isn’t it important to recognize the commonality of processing as
well?”

The answer is that, of course, it is important to recognize the commonality of
processing across applications. But there are several problems with trying to
focus on the commonality of processes-processes change much more rapidly
than data, processes tend to mix common and unique processing so tightly that
they are often inseparable, and classical process analysis often places an artifi-
cially small boundary on the scope of the design. Data is inherently more stable
than processing. The scope of a data analysis is easier to enlarge than the scope
of aprocess model. Therefore, focusing on data as the keystone for recognizing
commonality makes sense. In addition, the assumption is made that if com-
monality of data is discovered, the discovery will lead to a corresponding com-
monality of processing.

For these reasons, the data model-which cuts across all applications and
reflects the corporate perspective-is the foundation for identifying and unifying
commonality of data and processing.

uonesedaid

[edluyosy
€ssa
uoggueweldwl | |\
sisAjeue Ayoedes v
1s@) ssals
fympoe yuiol wp
uBisep aseqejep sisAjeue funioe [piouob o
asnoyaiem ejep xogpeaiq m_m\m_m.:m sso00rd S uoyeidwoo | ¢
9ssa ¢ssa sisheue eyep a
auljurew W
s
2
°
sishjeue i
Buiwweiboid I |lepow eyep q
n sisAjeue souewoped
6SSa tssa s ‘soads olwyiobje o4
monal B0 BIED | |
ubisep
1oelans yoea Joj u (usuodwoo yoes Joj) a4a v
|Jejuswyiedaqg o 2vo
e sisAjeue
° eouewIopad Uk 19n8] xeIu0o
BJEp J8Y10)
UM auiquioo
. o
azAjeue
‘ablow ' Mol uomisodwoosp
o} weiboid jena] uBiy fevonouny | | 4
T T
T T
134
€aNI ° siskjeue uonezijew.oy
vo Ayoedeo sjuawalinbas o
—_—
uonsenb ejep Joelxa papasu Suseud pousIqEISS
Jomsue elep azAjeue 0y weiboid BlEP BUILISIOP buzs | gy JewuoIAUS
| [ed1uyoe}
aNI ZaNI Hant f 103ud
ejep ‘9poo
sisA[eue yoes 1o} Bunsixe osn o
mc_mmmoo‘.a me_mMm mm_.__.w_xo
ueid oibajens
) syodau Joj Juswdojonap [eonAeue onstinay Joj — suojsses Qyr
4 sjuswalinbai piepuels spodal eannedes Buniayyet eyep
” 11d3a ‘leyuswipedsp 1oy — SMOEM |1y
< d
< asnoyaJe)\ eleq 10}09G |euoljeladQ

10309Ss SSA
AD0T0dOHLIIN LNINdOTIAIA NIAIHA-V1IVA

Q. o0 o000

o ® o &

-
~
[,

Blep Jo ayepdn ou e

BJEP JO SJUNOWE pajwl| «
Blep paALap Ajisow
|eonAeue o

olsNaY e

pajuBLIo Dd e

20y pE o

Aresjodwaoy o
annedaluou o

‘010 ‘sainbyy Aoy Ajyuow

‘Bunodal uondaoxe ‘sishjleue
oydelbowap ‘sisAjeue puail e
saseqejep pabeuew Ajeiyoosed
paALep pue aAlwLd JO aINIXIW e
S]9SqNSs ‘SUOBZIBWIWNS o
[elyoo.ed o
anedal o

Bununoooe

Buueauibus

ejeq [enplAalpul

Bunexrew

eleq |eyuawpedaq

-«

‘ASojopoyaw Juswdojansp usaug-eled ‘¥ H1JW ¥'v an314

BJep OIWO}e, Paj|ed SAWIOWOS o
B} JOAO BJEP PB|IRIep SE o
JUBPUNPAIUOU

BJep paALep
olignd awos yum ‘eamwiid Ajsow e
BJEp [BUISIXS UIBJUOD UBD o
Arenuelb Jo s|ang| JUBJalIp
pajusLIo 109[gns o
Aluo yoyeq ‘ssedoe duljuo OU e
Ajuo peoj ‘erepdn ou e
oW} JOA0 dAl0adsIad B e
elep pajelbajul «

uonoesuel) 1unoooe

1901440 Yueq 1owoIsno

asnoyaiep eleq

FHNLO3LIHOHYV vivad

B w

pa)UBLIO UOIOBSURI} ‘BUIjUO o
pajepdn aq ued BlEp «

BIEP ON[BA JUBLIND o
uoneoljdde Aq uoneoidde ying «

$ao

pred
jqueq

sueo|

sbuines

eleq |euonesado

APPENDIX

372

PaJuUSLIO UONOBSUEI} ‘BUIJUO o
pajepdn aq ueod elep «

BJEP SN[BA JUBLIND o

uoneoldde Ag uoneoydde ying «

BJep OIWoje, Po||ed SWIBWOS o
oW} JONO BIEp PO|IEIp SE o
JUBPUNPAIUOU o
BJep panlep
ol|gnd swos yum ‘enwid Asow e
BJep [BUISIXS UIBJUOD UED o
Ajenuelb Jo sjans)| Juslayip «
pajualIo 109[gns «
Ajuo yoyeq ‘ssa00E BUI|UO OU sao
Auo peoj ‘eyepdn ou « ——
auwl} JoA0 dA0adsiad e e
ejep pajeibajul «

pieo
sueq

sbuines

uonoesuel} Junoooe ejeq |euonesado

[spow ejep
1
19011J0 ueq Jawoisnd :
asnoyaiep\ ejeq “
n
s
uoneredaid y
JUBLILOIIAUD bl 2
[eoluyoe} [eoluyoe} ©
s
¥Ssa €ssa
)
o
'
ubisap aseqejep sisAjeue
asnoyaiem ejep xoqpeaiq
\ /ewmo 2ssa
sisAjeue
L L L woysAs || eole sisAjeue
uonejndod Buiwweiboid soads 20In0s 100lgns |epow ejep
oissal | essal | sssal | sssal | sssa +ssa

100[gns yoes Joj

‘S HIAN

sy 24n314

sishieue Aoedeo vo
seyssons 1S
Auoe juol e s
Aunnoe fessusb v s
sisfeve sseooid °
sishjeue ejep a 2
susinbesesd DI o
Buljurew w B
d
y
°
7 e
sisAjeue eoueuoped s
ubisep uonuep ssoads ouoBle
e0ishu
uorsep L T (ueuoduoo yoee o) ada v o_

U-|. [9R] XBIU0D

uonisoduiooap
fevonouny

Vo
E
Ayoedeo
v0

uopezyewio)
siuewaunbas

pousigeisa
JusBWuUOIIAUS

(010}
1P | oaug

©lep ‘9pod
Bunsixe asn

swaishs Bugsixe
uerd oiBejens
suoisses Qyr
Buuioued eep
smoinselul

APPENDIX 373

Deliverables

The steps of the data-driven development methodology include a deliverable. In
truth, some steps contribute to a deliverable with other steps. For the most
part, however, each step of the methodology has its own unique deliverable.

The deliverables of the process analysis component of the development of
operational systems are shown by Figure A.6.

Figure A.6 shows that the deliverable for the interview and data-gathering
process is a raw set of systems requirements. The analysis to determine what
code/data can be reused and the step for sizing/phasing the raw requirements
contribute a deliverable describing the phases of development.

The activity of requirements formalization produces (not surprisingly) a formal
set of system specifications. The result of the functional decomposition activi-
ties is the deliverable of a complete functional decomposition.

The deliverable for the dfd definition is a set of dfds that describe the functions
that have been decomposed. In general, the dfds represent the primitive level of
decomposition.

The activity of coding produces the deliverable of programs. And finally, the
activity of implementation produces a completed system.

The deliverables for data analysis for operational systems are shown in Figure
AT

The same deliverables discussed earlier are produced by the interview and data
gathering process, the sizing and phasing activity, and the definition of formal
requirements.

The deliverable of the ERD activity is the identification of the major subject
areas and their relationship to each other. The deliverable of the dis activity is
the fully attributed and normalized description of each subject area. The final
deliverable of physical database design is the actual table or database design,
ready to be defined to the database management system(s).

The deliverables of the data warehouse development effort are shown in Figure
A.8, where the result of the breadbox analysis is the granularity and volume
analysis. The deliverable associated with data warehouse database design is
the physical design of data warehouse tables. The deliverable associated with
technical environment preparation is the establishment of the technical envi-
ronment in which the data warehouse will exist. Note that this environment
may or may not be the same environment in which operational systems exist.

374

APPENDIX

M1

M2

M3

M4

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

* interviews

* data gathering

* JAD sessions

* strategic plan

e existing systems

use existing code, data

sizing, phasing

requirements formalization

functional decomposition

context level 0

context level 1-n

\
—

DFD (for each component)

algorithmic specs;
performance analysis

pseudocode

coding

walkthrough

compilation

testing

implementation

raw system
requirements

phases of
development

formal requirements

complete functional
decomposition

DFDs

programs

completed system

Figure A.6 METH 6. Deliverables throughout the development life cycle.

APPENDIX 375

M1 . :
¢ interviews
 data gathering raw system
* JAD sessions requirements
e strategic plan
e existing systems
M2 L
use existing code, data
M3 . . hases of
. ph b
s12Ing, phasing development
M4 . .
requirements formalization formal requirements
D1
ERD major subject areas
D2 DIS midlevel detailed data
model
D3 .
performance analysis
D4) . tables, databases
physical database design physically designed

Figure A.7 METH 7. Deliverables for operational data analysis.

On a repetitive basis, the deliverables of data warehouse population activities
are represented by Figure A.9, which shows that the deliverable for subject
area analysis-each time the data warehouse is to be populated-is the selection
of a subject (or possibly a subset of a subject) for population.

The deliverable for source system analysis is the identification of the system of
record for the subject area being considered. The deliverable for the program-

376

APPENDIX

DSS2

breadbox analysis

DSS6

data warehouse

granularity analysis

physical database

.)
database design »| design

DSS4
technical environment DSS technical
preparation P environment ready

for loading
Figure A.8 METH 8. Preliminary data warehouse deliverables.

DSS5 DSS7 DSS8 DSS9 DSS10
subject source specs programming population
area system

analysis
which identification of extract, usable data
subject the system of integration, time warehouse
area to record basis, program
build transformation

Figure A.9 METH 9. Deliverables from the steps of data warehouse development.

ming phase is the programs that will extract, integrate, and change data from
current value to time variant.

APPENDIX 377

IND1 IND2 IND4
determine program to analyze data fulfilled
data needed [| extract data | | requirements
IND3
data pulled program to
from the merge, analyze,
warehouse combine with
other data
analysis with
other relevant
data

Figure A.10 METH 10. Deliverables for the heuristic level of processing.

The final deliverable in the population of the data warehouse is the actual pop-
ulation of the warehouse. It is noted that the population of data into the ware-
house is an ongoing activity.

Deliverables for the heuristic levels of processing are not as easy to define as
they are for the operational and data warehouse levels of development. The
heuristic nature of the analytical processing in this phase is much more infor-
mal. However, Figure A.10 shows some of the deliverables associated with
heuristic processing based on the data warehouse.

Figure A.10 shows that data pulled from the warehouse is the result of the
extraction program. The deliverable of the subsequent analysis step is further
analysis based on data already refined. The deliverable of the final analysis of
data is the satisfaction (and understanding) of requirements.

A Linear Flow of Deliverables

Except for heuristic processing, a linear flow of deliverables is to be expected.
Figure A.11 shows a sample of deliverables that would result from the execu-
tion of the process analysis component of the data-driven development
methodology.

It is true that within reason there is a linear flow of deliverables; however, the
linear flow shown glosses over two important aspects:

378

APPENDIX

raw system
requirements

phases of
development

formal
requirements

l

complete functional
decomposition

DFDs

programs

l

completed system

Figure A.11 METH 11. A linear flow of deliverables for operational process analysis.

m The deliverables are usually produced in an iterative fashion.

m There are multiple deliverables at any given level. In other words, deliver-
ables at any one level have the capability of spawning multiple deliverables
at the next lower level, as shown by Figure A.12.

Figure A.12 shows that a single requirements definition results in three devel-
opment phases. Each development phase goes through formal requirements
definition and into decomposition. From the decomposition, multiple activities
are identified, each of which has a dfd created for it. In turn, each dfd creates
one or more programs. Ultimately, the programs form the backbone of the com-
pleted system.

APPENDIX 379

raw system
requirements
phases of
development
L]
formal
requirements
L1 1 L] C] L 1 L1 []
complete functional
decomposition 1 CJCJ] CJCd
EO/:I OO0 O00O0O0O0O
DFDs QOO0OOOOO ?ﬁ/ OTOOOOO

programs (‘

completed system

Figure A.12 METH 12. Deliverables usually spawn multiple deliverables at a lower level.

Estimating Resources Required for
Development

Looking at the diagram shown in Figure A.12, it becomes apparent that once the
specifics of exactly how many deliverables are being spawned are designed,
then an estimation of how many resources the development process will take
can be rationally done.

Figure A.13 shows a simple technique, in which each level of deliverables first
is defined so that the total number of deliverables is known. Then the time

380 APPENDIX

no del x del =

nodelxdel=__
] nodelxdel=__

nodelxdel=___
Cf? OO0 0000, nodelxdel=___

no del x del =

=

Figure A.13 METH 13. stimating system development time.

required for the building of each deliverable is multiplied by each deliverable,
yielding an estimate of the employee resources required.

SDLC/CLDS

Earlier discussions alluded to the fact that operational systems are built under
one system development life cycle, and DSS systems are built under another
system development life cycle. Figure A.14 shows the development life cycle
associated with operational systems, where requirements are at the starting
point. The next activities include analysis, design, programming, testing, inte-
gration, implementation, and maintenance.

The system development life cycle associated with DSS systems is shown by
Figure A.15, where DSS processing begins with data. Once data for analysis is
secured (usually by using the data warehouse), programming, analysis, and so
forth continue. The development life cycle for DSS data ends with an under-
standing of the requirements.

APPENDIX

el o0 ® o =

=

w o o O O

the classical system development lifecycle

M1

requirements

interviews
data gathering Vsi
JAD sessions analyysis
strategic plan design
existing systems
| programming
M2 se existing testing
code, data . .
integration
PREQ1 technical] | . .
environment M3 | sizing, implementation
established phasing .
maintenance
I L
M4 requirements capacity CA
formalization analysis
r : GA1
I]
P11 functional high level
decomposition review
]
P2 D2| pis
|
P3 D3| performance
context level 1-n .
analysis
P4 | i GA2
DFD (for each component) —l D4
I JAT physical design
P5 algorithmic specs; dat'&l S -tore database review
9 pecs; . definition design
performance analysis |
! pseudocode
P7 _
coding
I M mainline
P8 walkthrough PREQ prerequisite
D data analysis
P9 ilati P process analysis
GA general activity
P10 | JA joint activity
tes“ng stress test ST ST stress test
[———= CA capacity analysis
P11 implementation

Figure A.14 METH 14.

381

o0 ®» o -

o c o

-~ 0 ® —

APPENDIX

data - source
subject -
model area system programming
analysis analysis

data dictionary

performance
analysis

physical
database
design

pseudocode

operational the role of the data dictionary
development in the development process
for data-driven development

Figure A.16 METH 16. Data warhouse development.

The data dictionary plays a central role in operational processing in the activi-
ties of ERD development and documentation, DIS development, physical data-
base design, and coding. The data dictionary plays a heavy role in data model
analysis, subject area selection, source system selection (system of record
identification), and programming in the world of data warehouse development.

What about Existing Systems?

In very few cases is development done freshly with no backlog of existing sys-
tems. Existing systems certainly present no problem to the DSS component of
the data-driven development methodology. Finding the system of record in
existing systems to serve as a basis for warehouse data is a normal event.

384

APPENDIX

A word needs to be said about existing systems in the operational environment.
The first approach to existing operational systems is to try to build on them.
When this is possible, much productivity is the result. But in many cases exist-
ing operational systems cannot be built on.

The second stance is to try to modify existing operational systems. In some
cases, this is a possibility; in most cases, it is not.

The third stance is to do a wholesale replacement and enhancement of existing
operational systems. In this case, the existing operational system serves as a
basis for gathering requirements, and no more.

A variant of a wholesale replacement is the conversion of some or all of an
existing operational system. This approach works on a limited basis, where the
existing system is small and simple. The larger and more complex the existing
operational system, the less likelihood that the system can be converted.

GLOSSARY

access the operation of seeking, reading, or writing data on a storage unit.

access method a technique used to transfer a physical record from or to a
mass storage device.

access pattern the general sequence in which the data structure is accessed
(for example, from tuple to tuple, from record to record, from segment to seg-
ment, etc.).

accuracy a qualitative assessment of freedom from error or a quantitative
measure of the magnitude of error, expressed as a function of relative error.

ad hoc processing one-time-only, casual access and manipulation of data on
parameters never before used, usually done in a heuristic, iterative manner.

after image the snapshot of data placed on a log on the completion of a
transaction.

agent of change a motivating force large enough not to be denied, usually
aging of systems, changes in technology, radical changes in requirements, etc.

algorithm a set of statements organized to solve a problem in a finite number
of steps.

alternate storage storage other than disk-based storage used to hold bulk
amounts of relatively inactive storage.

386

analytical processing using the computer to produce an analysis for man-
agement decision, usually involving trend analysis, drill-down analysis, demo-
graphic analysis, profiling, etc.

application a group of algorithms and data interlinked to support an organi-
zational requirement.

application database a collection of data organized to support a specific
application.

archival database a collection of data containing data of a historical nature.
As arule, archival data cannot be updated. Each unit of archival data is relevant
to a moment in time, now passed.

artifact a design technique used to represent referential integrity in the DSS
environment.

atomic (1) data stored in a data warehouse; (2) the lowest level of process
analysis.

atomic database a database made up of primarily atomic data; a data ware-
house; a DSS foundation database.

atomic-level data data with the lowest level of granularity. Atomic-level data
sits in a data warehouse and is time-variant (i.e., accurate as of some moment
in time now passed).

attribute a property that can assume values for entities or relationships.
Entities can be assigned several attributes (for example, a tuple in a relation-
ship consists of values). Some systems also allow relationships to have attrib-
utes as well.

audit trail data that is available to trace activity, usually update activity.

backup afile serving as a basis for the activity of backing up a database. Usu-
ally a snapshot of a database as of some previous moment in time.

batch computer environment in which programs (usually long-running,
sequentially oriented) access data exclusively, and user interaction is not
allowed while the activity is occurring.

batch environment a sequentially dominated mode of processing; in batch,
input is collected and stored for future, later processing. Once collected, the
batch input is transacted sequentially against one or more databases.

before image a snapshot of a record prior to update, usually placed on an
activity log.

bitmap a specialized form of an index indicating the existence or nonexis-
tence of a condition for a group of blocks or records. Bitmaps are expensive to
build and maintain but provide very fast comparison and access facilities.

GLOSSARY 387

blocking the combining of two or more physical records so that they are
physically located together. The result of their physical colocation is that they
can be accessed and fetched by a single execution of a machine instruction.

cache a buffer usually built and maintained at the device level. Retrieving
data out of a cache is much quicker than retrieving data out of a cylinder.

cardinality (of a relation) the number of tuples (i.e., rows) in a relation.
CASE computer-aided software engineering

checkpoint an identified snapshot of the database or a point at which the
transactions against the database have been frozen or have been quiesced.

checkpoint/restart a means of restarting a program at some point other
than the beginning for example, when a failure or interruption has occurred. N
checkpoints may be used at intervals throughout an application program. At
each of those points, sufficient information is stored to permit the program to
be restored to the moment in time the checkpoint has been taken.

CLDS the facetiously named system development life cycle for analytical,
DSS systems. CLDS is so named because, in fact, it is the reverse of the classi-
cal systems development life cycle SDLC.

clickstream data data generated in the Web environment that tracks the
activity of the users of the Web site.

column avertical table in which values are selected from the same domain. A
row is made up of one or more columns.

Common Business Oriented Language (COBOL) a computer language
for the business world. A very common language.

commonality of data similar or identical data that occurs in different appli-
cations or systems. The recognition and management of commonality of data is
one of the foundations of conceptual and physical database design.

compaction a technique for reducing the number of bits required to repre-
sent data without losing the content of the data. With compaction, repetitive
data are represented very concisely.

condensation the process of reducing the volume of data managed without
reducing the logical consistency of the data. Condensation is essentially differ-
ent from compaction.

contention the condition that occurs when two or more programs try to
access the same data at the same time.

continuous time span data data organized so that a continuous definition
of data over a span of time is represented by one or more records.

388

corporate information factory (CIF) the framework that exists that sur-
rounds the data warehouse; typically contains an ODS, a data warehouse, data
marts, DSS applications, exploration warehouses, data mining warehouses,
alternate storage, and so forth

CPU central processing unit.

CPU-bound the state of processing in which the computer can produce no
more output because the CPU portion of the processor is being used at 100 per-
cent capacity. When the computer is CPU-bound, typically the memory and
storage processing units are less than 100 percent utilized. With modern DBMS,
it is much more likely that the computer is I/O-bound, rather than CPU-bound.

CRM customer relationship management, a popular DSS application
designed to streamline customer/corporate relationships.

cross-media storage manager software whose purpose is to move data to
and from disk storage and alternate storage.

current value data data whose accuracy is valid as of the moment of execu-
tion, as opposed to time-variant data.

DASD see direct access storage device.

data arecording of facts, concepts, or instructions on a storage medium for
communication, retrieval, and processing by automatic means and presenta-
tion as information that is understandable by human beings.

data administrator (DA) the individual or organization responsible for the
specification, acquisition, and maintenance of data management software and
the design, validation, and security of files or databases. The data model and
the data dictionary are classically the charge of the DA.

database a collection of interrelated data stored (often with controlled, lim-
ited redundancy) according to a schema. A database can serve single or multi-
ple applications.

database administrator (DBA) the organizational function charged with
the day-to-day monitoring and care of the databases. The DBA function is more
closely associated with physical database design than the DA is.

database key a unique value that exists for each record in a database. The
value is often indexed, although it can be randomized or hashed.

database management system (DBMS) a computer-based software sys-
tem used to establish and manage data.

data-driven development the approach to development that centers
around identifying the commonality of data through a data model and building
programs that have a broader scope than the immediate application. Data-
driven development differs from classical application-oriented development.

GLOSSARY 389

data element (1) an attribute of an entity; (2) a uniquely named and well-
defined category of data that consists of data items and that is included in a
record of an activity.

data item set (dis) a grouping of data items, each of which directly relates
to the key of the grouping of data in which the data items reside. The data item
set is found in the midlevel model.

data mart a departmentalized structure of data feeding from the data
warehouse where data is denormalized based on the department’s need for
information.

data mining the process of analyzing large amounts of data in search of pre-
viously undiscovered business patterns.

data model (1) the logical data structures, including operations and con-
straints provided by a DBMS for effective database processing; (2) the system
used for the representation of data (for example, the ERD or relational model).

data structure a logical relationship among data elements that is designed
to support specific data manipulation functions (trees, lists, and tables).

data warehouse a collection of integrated, subject-oriented databases
designed to support the DSS function, where each unit of data is relevant to
some moment in time. The data warehouse contains atomic data and lightly
summarized data.

decision support system (DSS) a system used to support managerial deci-
sions. Usually DSS involves the analysis of many units of data in a heuristic
fashion. As a rule, DSS processing does not involve the update of data.

decompaction the opposite of compaction; once data is stored in a com-
pacted form, it must be decompacted to be used.

denormalization the technique of placing normalized data in a physical loca-
tion that optimizes the performance of the system.

derived data data whose existence depends on two or more occurrences of
a major subject of the enterprise.

derived data element a data element that is not necessarily stored but that
can be generated when needed (age, current date, date of birth).

design review the quality assurance process in which all aspects of a system
are reviewed publicly prior to the striking of code.

dimension table the place where extraneous data that relates to a fact table
is placed in a multidimensional table.

direct access retrieval or storage of data by reference to its location on a vol-
ume. The access mechanism goes directly to the data in question, as is generally
required with online use of data. Also called random access or hashed access.

390

direct access storage device (DASD) a data storage unit on which data
can be accessed directly without having to progress through a serial file such as
a magnetic tape file. A disk unit is a direct access storage device.

dormant data data that is very infrequently used.

download the stripping of data from one database to another based on the
content of data found in the first database.

drill-down analysis the type of analysis where examination of a summary
number leads to the exploration of the components of the sum.

DSS application an application whose foundation of data is the data ware-
house.

dual database the practice of separating high-performance, transaction-
oriented data from decision support data.

dual database management systems the practice of using multiple data-
base management systems to control different aspects of the database environ-
ment.

dumb terminal a device used to interact directly with the end user where all
processing is done on a remote computer. A dumb terminal acts as a device that
gathers data and displays data only.

estetbusiness commerce conducted based on Web interactions.

encoding a shortening or abbreviation of the physical representation of a
data value (e.g., male = “M,” female = “F”).

enterprise resource planning (ERP) application software for processing
transactions.

entity a person, place, or thing of interest to the data modeler at the highest
level of abstraction.

entity-relationship diagram (ERD) a high-level data model; the schematic
showing all the entities within the scope of integration and the direct relation-
ship between those entities.

event a signal that an activity of significance has occurred. An event is noted
by the information system.

Executive Information Systems (EIS) systems designed for the top exec-
utive, featuring drill-down analysis and trend analysis.

extract/load/transformation (ETL) the process of taking legacy applica-
tion data and integrating it into the data warehouse.

external data (1) data originating from other than the operational systems
of a corporation; (2) data residing outside the central processing complex.

GLOSSARY 391

exploration warehouse a structure specifically designed for statistical pro-
cessing that searches for business patterns.

extract the process of selecting data from one environment and transporting
it to another environment.

fact table the center of a star join table where data that has many occur-
rences will be located.

flat file a collection of records containing no data aggregates, nested
repeated data items, or groups of data items.

foreign key an attribute that is not a primary key in a relational system but
whose values are the values of the primary key of another relation.

fourth-generation language language or technology designed to allow the
end user unfettered access to data.

functional decomposition the division of operations into hierarchical func-
tions (activities) that form the basis for procedures.

global data warehouse a warehouse suited to the needs of headquarters of
a large corporation.

granularity the level of detail contained in a unit of data. The more detail
there is, the lower the level of granularity. The less detail there is, the higher the
level of granularity.

granularity manager the software or processes that edit and filter Web data
as it flows into the data warehouse. The data that flows into the data warehouse
environment from the Web environment is usually clickstream data that is
stored in a Web log.

heuristic the mode of analysis in which the next step is determined by the
results of the current step of analysis. Used for decision support processing.

image copy a procedure in which a database is physically copied to another
medium for the purposes of backup.

index the portion of the storage structure maintained to provide efficient
access to a record when its index key item is known.

information data that human beings assimilate and evaluate to solve a prob-
lem or make a decision.

integrity the property of a database that ensures that the data contained in
the database is as accurate and consistent as possible.

interactive a mode of processing that combines some of the characteristics
of online transaction processing and batch processing. In interactive process-
ing, the end user interacts with data over which he or she has exclusive control.

GLOSSARY 393

master file a file that holds the system of record for a given set of data (usu-
ally bound by an application).

metadata (1) data about data; (2) the description of the structure, content,
keys, indexes, etc., of data.

microprocessor a small processor serving the needs of a single user.

migration the process by which frequently used items of data are moved to
more readily accessible areas of storage and infrequently used items of data are
moved to less readily accessible areas of storage.

million instructions per second (mips) the standard measurement of
processor speed for minicomputers and mainframe computers.

multidimensional processing data mart processing based on a star join
structuring of data.

near line storage data that is not stored on disk but is never the less still
accessible; used to hold very large amounts of relatively inactive data.

online analytical processing (OLAP) departmental processing for the
data mart environment.

online storage storage devices and storage media where data can be
accessed in a direct fashion.

operational data data used to support the daily processing a company does.

operational data store (ODS) a hybrid structure designed to support both
operational transaction processing and analytical processing.

operations the department charged with the running of the computer.

optical disk a storage medium using lasers as opposed to magnetic devices.
Optical disk is typically write only, is much less expensive per byte than mag-
netic storage, and is highly reliable.

overflow (1) the condition in which a record or a segment cannot be stored
in its home address because the address is already occupied. In this case, the
data is placed in another location referred to as overflow; (2) the area of DASD
where data is sent when the overflow condition is triggered.

ownership the responsibility for updating operational data.

page (1) a basic unit of data on DASD; (2) a basic unit of storage in main
memory.

parameter an elementary data value used as a criterion for qualification, usu-
ally of data searches or in the control of modules.

GLOSSARY 395

repeating groups a collection of data that can occur several times within a
given record occurrence.

rolling summary a form of storing archival data where the most recent data
has the most details stored, and data that is older has fewer details stored.

scope of integration the formal definition of the boundaries of the system
being modeled.

SDLC system development life cycle; the classical operational system devel-
opment life cycle that typically includes requirements gathering, analysis,
design, programming, testing, integration, and implementation.

sequential file a file in which records are ordered according to the values of
one or more key fields. The records can be processed in this sequence starting
from the first record in the file, continuing to the last record in the file.

serial file a sequential file in which the records are physically adjacent, in
sequential order.

set-at-a-time processing access of data by groups, each member of which
satisfies a selection criterion.

snapshot a database dump or the archiving of data out of a database as of
some moment in time.

snowflake structure the result of joining two or more star joins.

spiral development iterative development, as opposed to waterfall develop-
ment.

solutions database the component of a DSS environment where the results
of previous decisions are stored. Solutions databases are consulted to help
determine the proper course of action in a current decision-making situation.

staging area a place where data in transit is placed, usually coming from the
legacy environment prior to entering the ETL layer of processing.

star join a data structure where data is denormalized to optimize the access
of the data; the basis of multidimensional data mart design.

storage hierarchy storage units linked to form a storage subsystem, in
which some units are fast but small and expensive, and other units are large but
slower and less expensive.

subject database a database organized around a major subject of the corpo-
ration. Classical subject databases are for customer, transaction, product, part,
vendor.

REFERENCES

Articles

Adelman, Sid. “The Data Warehouse Database Explosion.” DMR (December
1996). A very good discussion of why volumes of data are growing as fast as
they are in the data warehouse environment and what can be done about it.

Kalman, David. “The Doctor of DSS.” DBMS Magazine (July 1994). An inter-
view with Ralph Kimball.

Geiger, Jon. “Data Element Definition.” DMR (December 1996). A good descrip-
tion of the definitions required in the system of record.

——. “What'’s in a Name.” Data Management Review (June 1996). A discussion
of the implications of naming structures in the data warehouse environment.

Gilbreath, Roy, M.D. “Informational Processing Architecture for Outcomes
Management.” A description of data warehouse as it applies to health care
and outcomes analysis. Under review.

Gilbreath, Roy, M.D., Jill Schilp, and Robert Pickton “Towards an Outcomes
Management Informational Processing Architecture.” HealthCare Informa-
tion Management 10, No. 1 (Spring 1996). A discussion of the architected
environment as it relates to healthcare.

. Rererences QFTH

——. “Managing the Data Warehouse: The Data Content card Catalog.” DMR
(December 1996). An introduction to the notion of a data content card cata-
log, that is, the stratification of data content.

——. “Managing the Data Warehouse Environment.” Data Management
Review (February 1996). Defining who the data warehouse administrator is.

——. “Measuring Capacity in the Data Warehouse.” Enterprise Systems Jour-
nal (August 1996). A discussion of how capacity should be measured in the
data warehouse and DSS environment.

——. “Monitoring the Data Warehouse Environment.” Data Management
Review (January 1996). What is a data monitor for the data warehouse envi-
ronment and why would you need it.

——. “Rethinking Data Relationships for Warehouse Design.” Sybase Server b,
No. 1 (Spring 1996). A discussion of the issues data warehouse data relation-
ships.

——. “SAP and the Data Warehouse.” DMR (July/Aug 1996). A description of
why the data warehouse is still needed in the face of SAP.

——. “Security in the Data Warehouse: Data Privatization.” Enterprise Systems
Journal (March 1996). Data warehouse requires a very different approach to
security than the traditional VIEW-based approach offered by DBMS ven-
dors.

——. “Summary Data: The New Frontier.” Data Management Review (May
1996). A description of the different types of summary data, including
dynamic summary data, static summary data, lightly summarized data, and
highly summarized data.

Inmon, W.H. “User Reaction to the Data Warehouse.” DMR (December 1996). A
description of the different user types in data warehousing.

——. “Virtual Data Warehouse: The Snake Oil of the ‘90s.” Data Management
Review (April 1996). A discussion of the virtual data warehouse and how the
concept tries to attach itself to the legitimacy of the data warehouse.

“In the Words of Father Inmon.” MIS (February 1996) An interview with Bill
Inmon in November of 1995 in Australia.

Jordan, Arthur. “Data Warehouse Integrity: How Long and Bumpy the Road?”
Data Management Review (March 1996). A discussion of the issues of data
quality inside the data warehouse.

Lambert, Bob. “Break Old Habits to Define Data Warehousing Requirements.”
Data Management Review (December 1995). A description of how the end
user should be approached to determine DSS requirements.

——. “Data Warehousing Fundamentals: What You Need to Know to Succeed.”
Data Management Review (March 1996). Several significant strategies for
data warehousing to guide you through a successful implementation.

- Rererences QT

Dodge, Gary, and Tim Gorman. Oracle8t Data Warehousing. New York: John
Wiley & Sons. 2000.

Dyche, Jill. The CRM Handbook. Reading, MA: Addison Wesley. 2001.

——. E-data: Turning Data into Information with Data Warehousing. Read-
ing, MA: Addison Wesley. 2000.

English, Larry. Improving Data Warehouse and Business Information Qual-
1ty. New York: John Wiley & Sons. 1999.

Hackathorn, Richard. Web Farming for the Data Warehouse, San Francisco:
Morgan Kaufman. 1998.

Imhoff, Claudia, Lisa Loftis, and John Geiger. Building the Customer-Centric
Enterprise. New York: John Wiley & Sons. 2001.

Inmon, W.H. Building the Data Warehouse. New York: John Wiley & Sons. 1996.

——. Building the Data Warehouse, Second Edition. New York: John Wiley &
Sons. 1996.

——. Building the Operational Data Store, Second Edition. New York: John
Wiley & Sons. 1999.

——. Data Architecture: The Information Paradigm. New York: QED. 1993.

——. Third Wave Processing: Database Machines and Decision Support Sys-
tems. New York: John Wiley & Sons. 1993.

Inmon, W.H. and Richard Hackathorn. Using the Data Warehouse. New York:
John Wiley & Sons. 1994.

Inmon, W.H., Jon Geiger, and John Zachman. Data Stores, Data Warehousing
and the Zachman Framework. New York: McGraw Hill. 1997.

Inmon, W.H., Katherine Glassey, and J.D. Welch. Managing the Data Ware-
house. New York: John Wiley & Sons. 1996.

Inmon, W.H., Claudia Imhoff, and Ryan Sousa. Corporate Information Factory:
Third Edition. New York: John Wiley & Sons. 2000.

Inmon, W.H. and Jeff Kaplan. Information Systems Architecture: Development
in the 90s. New York: John Wiley & Sons. 1993.

Inmon, W.H. and Chuck Kelley. RDB/VMS: Developing the Data Warehouse.
Boston. QED Pub Group. 1993.

Inmon, W.H., Joyce Montanari, Bob Terdeman, and Dan Meers. Data Ware-
housing for E-Business. New York: John Wiley & Sons. 2001.

Inmon, W.H. and Sue Osterfelt. Understanding Data Pattern Processing. New
York: QED. 1993.

Inmon, W.H., Ken Rudin, Christopher Buss, and Ryan Sousa. Data Warehouse
Performance. New York: John Wiley & Sons. 1998.

a02 | T

Inmon, W.H. and R.H. Terdeman. Exploration Warehousing. New York: John
Wiley & Sons. 2000.

Kachur, Richard. Data Warehouse Management Handbook. Englewood Cliffs,
NJ: Prentice Hall. 2000.

Kelly, Sean. Data Warehousing: The Key to Mass Customization. New York:
John Wiley & Sons. 1996.

Kimball, Ralph, and Richard Merz. The Data Webhouse Toolkit. New York: John
Wiley & Sons. 2000.

Kimball, Ralph, Laura Reeves, Margy Ross, and Warren Thornthwaite. The Data
Warehouse Lifecycle Toolkit. New York: John Wiley & Sons. 1998.

Kimball, Ralph, and Margy Ross. The Data Warehouse Toolkit: Practical Tech-
niques for Building Dimensional Data Warehouses. New York: John Wiley
& Sons. 2002.

Love, Bruce. Enterprise Information Technologies. New York: John Wiley &
Sons. 1993.

Marco, David. Meta Data Repository. New York: John Wiley & Sons. 2000.

Parsaye, Kamran and Marc Chignell. Intelligent Database Tools and Applica-
ttons. New York: John Wiley & Sons. 1989.

Silverston, Len. The Data Model Resource Book Volume I. New York: John Wiley
& Sons. 2001.

Sullivan, Dan. Document Warehousing and Text Mining. New York: John Wiley
& Sons. 2001.

Swift, Ron. Accelerating Customer Relationships. Englewood Cliffs, NJ: Pren-
tice Hall. 2000.

Tannenbaum, Adrienne. Metadata Solutions. Reading, MA: Addison Wesley.
2002.

White Papers

Available on www.billinmon.com

“Accessing Data Warehouse Data from the Operational Environment.” Most
data flow is from the operational environment to the data warehouse envi-
ronment, but not all. This Tech Topic discusses the “backward” flow of data.

“Building the Data Mart or the Data Warehouse First?” Although the data mart
is a companion to the data warehouse, data mart vendors try to encourage
people to build the data mart without building the data warehouse. This Tech
Topic addresses the issues relevant to this important design decision.

. ReFeReNcEs QT

“Capacity Planning for the Data Warehouse.” This Tech Topic discusses the
issue of capacity planning and projection for both disk storage and proces-
sor resources for the data warehouse environment.

“Changed Data Capture.” The resources required for repeatedly scanning the
operational environment for the purpose of refreshing the data warehouse
can be enormous. This briefing addresses an alternative way to accomplish
the same thing.

“Charge Back in the Data Warehouse DSS Environment.” Charge back is an
extremely useful way to get the end user to take responsibility for the
resources that are being consumed. This Tech Topic addresses the issues of
charge back.

“Client/Server and Data Warehouse.” Client/server processing is quite able to
support data warehouse processing. This Tech Topic addresses the issues of
architecture and design.

“Creating the Data Warehouse Data Model from the Corporate Data Model.”
This paper outlines the steps you need to take to create the data warehouse
data model from the corporate data model.

“Data Mining: An Architecture.” Using the data warehouse is an art. This Tech
Topic relates the underlying architecture of the data warehouse to the
sophisticated way in which the data warehouse can be used.

“Data Mining: Exploring the Data.” Once the data is gathered and organized and
the architecture for exploitation has been built, the task remains to use the
data. This Tech Topic addresses how data can be mined once the architec-
ture is built.

“Data Stratification in the Data Warehouse.” How do you tell someone what is
inside a 1-terabyte data warehouse? How many customers? Of what type? Of
what age? Living where? Buying how much per year? This Tech Topic
addresses the technique of stratifying data in order to create a library “table
of contents” that describes the actual data content inside a data warehouse.

“Data Warehouse Administration.” With DSS and data warehouses comes the
need to manage the environment. A new organizational function has arisen:
data warehouse administration. This Tech Topic addresses the charter of
data warehouse administration and other important data management
issues.

“Data Warehouse Administration in the Organization.” Once the need for data
warehouse administration is recognized, there is the question, Where should
the DWA function be placed in the organization? This Tech Topic addresses
the issues of the organization placement of the DWA function.

“The Data Warehouse Budget.” This Tech Topic addresses the different patterns
of spending and the rate at which funds are spent. In addition, some sugges-
tions for minimizing expenses are included.

. RerereNnces QiFT¥

uted metadata architecture that enables metadata to be simultaneously dis-
tributed and managed autonomously.

“Monitoring Data Warehouse Activity.” Activity in the data warehouse needs to
be monitored for a variety of reasons. This Tech Topic describes monitoring
techniques and considerations, as well as a description of why activity mon-
itoring needs to be done

“Monitoring Data Warehouse Data.” Although activity monitoring is very impor-
tant, so is the monitoring of data itself in the data warehouse. The growth of
the data, the quality of the data, and the actual content of the data are all at
stake in this issue.

“OLAP and Data Warehouse.” Lightly summarized data has always been an inte-
gral part of the data warehouse architecture. Today this construct is know as
OLAP or a data mart. This Tech Topic addresses the relationship of OLAP
and the detailed data found in the data warehouse.

“The Operational Data Store.” The operational counterpoint of the data ware-
house is the operational data store (the ODS). The ODS is defined and
described in detail in this tech topic.

“Operational and DSS Processing from a Single Database: Separating Fact and
Fiction.” An early notion was that a single database should serve as the basis
for both operational processing and DSS analytical processing. This Tech
Topic explores the issues and describes why a data warehouse is the appro-
priate foundation for DSS informational processing

“Parallel Processing in the Data Warehouse.” The management of volumes of
data is the first and major challenge facing the data architect. Parallel tech-
nology offers the possibility of managing much data. This Tech Topic is on
the issues of parallel technology in the data warehouse environment.

“Performance in the Data Warehouse Environment.” Performance is as impor-
tant in the DSS data warehouse environment as it is in the OLTP environ-
ment. However, performance plays a very different role. This Tech Topic is
all about performance in the DSS data warehouse environment.

“Reengineering and the Data Warehouse.” Many organizations are not aware of
the strong and positive relationship between reengineering and the data
warehouse. This topic identifies the relationship and discusses the ramifica-
tions.

“Representing Data Relationships in the Data Warehouse: Artifacts of Data.”
Design issues for the building of data relationships in the data warehouse

“Security in the Data Warehouse.” Security takes on a different dimension in the
data warehouse than in other data processing environment. This Tech Topic
describes the issues. Tech Topics are available from PRISM Solutions.

406

“Service Level Agreements in the Data Warehouse Environment.” One of the
cornerstones of online operations is the service level agreement. Service
level agreements are applicable to the data warehouse, but are implemented
quite differently.

“Snapshots of Data in the Warehouse.” A description of the different types of
snapshots and the advantages and disadvantages of each.

“Summary Data in the Data Warehouse/Operational Data Store.” Summary data
has its own set of unique considerations. There is, for example, dynamic
summary data and static summary data. Both types of summary data require
very different treatment from the designer and the end user. This Tech Topic
creates a taxonomy for summary data and relates the different types of sum-
mary data to the data warehouse and the operational data store.

“Telling the Difference Between Operational and DSS.” In every shop, the issue
arises: what is operational and what is DSS. This Tech Topic tells you how to
tell the difference between the two environments.

“Time-Dependent Data Structures.” A discussion of the different types of data
structures and their advantages and disadvantages

“Using the Generic Data Model.” Some corporations have a data model as a
point of departure for the design of their data warehouse; others do not. The
generic data model jump-starts the data warehouse design and development
effort.

“What Is a Data Mart?” Data marts are a natural emanation from the data ware-
house. This Tech Topic outlines the salient characteristics of the data mart.

“What Is a Data Warehouse?” This Tech Topic defines what a data warehouse is
and what its structure looks like. This is a basic discussion appropriate to
anyone investigating the world of data warehouse.

For more white papers, refer to the Web site, www.billinmon.com.

A
access of data, global and
local data warehouses,
216-219
administering design
reviews, 324
agenda, design reviews, 323
airline commission
calculation system,
130-131
algorithmic differential, 8
alternate storage, design
reviews, 341
analysis example, EIS,
248-250
analytical program, 303
application-level
partitions, 58
architected environment
data integration, 19
levels of data, 17
migration, 277
architectural changes,
naturally evolving
architecture, 15
archival data, 74
external data, 275
operational window, 75
atomic data, 254
attendees, design reviews,
323-324
auditing, 64, 335

B
backflow, 337
banking systems,

granularity levels, 158,
162-163

building
costs, 68—69
data warehouse

in ERP structure, 314
outside ERP
structure, 315
business needs, design
reviews, 326

C
CDC (changed data
capture), 196-197
class IV ODS, design
reviews, 339
CLDS, 21
clickstream data, 298-299
collectiive view of data, 47
compaction, 47, 175, 335
completely unrelated
warehouses, 224-225
complex contextual
data, 194
complexity of
transformation, 118
components
external data, 272
snapshots, 123
unstructured data, 272
compound keys, 176
connectors, DIS, 96
contextual data, 192-194
continuous files, 61
coordinating development
among distributed
locations, 227
corporate data model, 89

distributed data
warehouses, 228, 231
migration plans, 278-279
corporate information
factory, 17
cost justification, 65-66
cost of reports, 66—68
creative indexes, 108
creative profiles, 108
credit scoring, 133
cross media storage
managers, design
reviews, 341
cumulative structures, 59
cyclicity of data, 115

D
DASD (direct access
storage device), 4, 39
data
archival, 74
compaction, 175
contextual, 192-193
corrections, design
reviews, 334
direct access, 129
heterogeneity, 69
homogeneity, 69
indirect access, 130
integration, architected
environment, 19
managing large
amounts, 167-169
monitoring, 170
parallel storage/
management, 171
profiles, 26

407

LERINDEXE

data (Continued)
purges, 72
relationships, design
reviews, 332
replication, 196
storage, design reviews,
341
variable length, 176
data-driven development
methodologies, 291, 293
data levels, architected
environment, 17
data mart level, 17
data marts, star joins,
138-139, 142
data mining, 53
data models, 88-89, 92, 102
design reviews, 326
external data, 273
unstructured data, 273
data to information
problems, naturally
evolving architecture,
12-14
data warehouse design, 81,
281
data model, 89, 92
design models, 87
field transformation, 83
format of legacy
data, 83
limiting operational data
scans, 85
loading
archival data, 84
current data, 85
ongoing data changes,
85
operational data, 82-83
stability analysis, 90
data warehouse level, 17
data warehouses
archival data, 74
auditing, 64
building costs, 68-69
collective view of
data, 47

compaction, 47
complexity of
transformation, 118
continuous files, 61
cost justification, 65-66
cost of reports, 66—68
cumulative
structures, 59
cyclicity of data, 115
data mining, 53
day 1-day n
phenomenon, 41
DBMS types, 179-180
detail levels, 239, 242
DSS analysts, 19
encoding data, 33
exploration, 53
functionality of data
movement, 118-121
granularity, 4346
hardware utilization, 23
history of data, 33
incorrect data, 76
integration, 31
interfaces, 283-284
light summarization
data, 50
living sample
databases, 53-55
meta data, 113, 189-190
monitoring
environment, 25-28
multiple level, 232-235
multiple storage
media, 189
nonvolatility, 33
partitions, 55-58
physical tables, 36-38
reference tables, 113-114
refreshing, 195-196
rolling summary
data, 59
simple direct file, 61
snapshots, 111
standards manuals, 64
storage media, 39

structure, 35
subject areas, 283
subject orientation,
31,36
time horizon, 34
time variance, 34
true archival level of
data, 51
volume
management, 126
databases, 4
day 1-day n
phenomenon, 41
DBMSs (database
management
systems), 4
changing, 181
multidimensional,
182-188
types, 179-180
deliberate introduction of
redundant data, 105
delta lists, 289
denormalization, 104-106
departmental data level, 17
derived data, 15
design models, 87
design reviews, 321
administering, 324
agenda, 323
alternate storage, 341
attendees, 323-324
auditing, 335
changing business needs,
326
class IV ODS, 339
compaction, 335
cross media storage
managers, 341
data
corrections, 334
models, 326
ownership, 334
relationships, 332
storage, 341
dormancy rates, 339

e INDEXRRTE)

end user volume of data, 328 reports, 74
requirements, 325 when to perform, 322 response time, 27
exploration designing data dual levels of
warehouses, 339 warehouse, 81, 281 granularity, 49
extent of field transformation, 83
development, 325 format of legacy E
external data issues, 336 data, 83 ebusiness, 307
extract processing, 327 limiting operational data ~ efficient index usage, 175
flowback, 337 scans, 85 EIS (executive information
Granularity loading systems), 19, 247
Manager, 340 archival data, 84 analysis example,
granularity of data, 331 current data, 85 248250
indexing data, 330 ongoing data changes, atomic data, 254
loading issues, 333 85 detailed data, 261
locating data, 337 operational data, drill down analysis,
logging, 336 82-83, 86 251-253
managing data detail levels, 239, 242 event mapping, 258-260
access, 331 detailed data, EIS, 261 retrieving data, 256-257
meta data storage, 335 developing distributed data summary data, 262
migration plans, 326 warehouses, 225-227 typical uses, 248
outages, 333 development, 222-224 encoding data, 33
partitioning, 338 development life cycle, 21 end user requirements,
physical d.ata. direct data access, 129 design reviews, 325
organization, 329 DIS (Data Item Set), 92-94 ERD (Entity Relationship
processing capacity connectors, 96 Diagram), 92-93
reql.nrements, 332 physical tables, 98 ERP (Enterprise Resource
processing charges, 338 . " Planning), 311-312
processing volume, 331 primary grouping of buildi g !
public summary data, 95 . uiding data
data, 334 sec()nda_ry grouping of warehouses, 314-315
purge criteria, 331 data, 96 corporate data
recovery times, 333 byp e-of data, 96-97 we?rehouse, 318-319
reference tables, 335 distributed data operational
repetitive warehouses, 201-202 applications, 312-313
processing, 337 corporate data model, ETL (extract/transform/
restructuring, 329 228,231 load), 122
SDLC, 322 developing, 225-227 events
SLAs, 330 meta data, 232 mapping, EIS, 258-260
software interfaces, 329 ~ dormancy rates, design triggering snapshots, 122
sparse indexes, 338 reviews, 339 exploration, 53
subject area midlevel drill down analysis, EIS, exploration
models, 340 251-253 warehouses, 339
system of record, 327 DSS (decision support extent of development,
temporary indexes, 338 system), 2 design reviews, 325
time lag issues, 336 analysts, 19 external contextual

updates, 336 monitoring system, 28 data, 194

410

external data, 265-267
archiving, 275
comparing to internal

data, 275
components, 272
data models, 273
frequency of
availability, 268
meta data, 269-270
storage, 271
extract processing, design
reviews, 327
extract program, 5

F

fast restore, 178

feedback loops, 156, 286

field transformation, data
warehouse design, 83

flowback, 337

format of legacy data, data
warehouse
design, 83

frequency of availability,
external data, 268

functionality of data
movement, 118-121

G
global data, intersection
with local data, 211-213
global data warehouses,
202-209
data access, 216-219
redundancy with local
data, 214-215
granularity, 43—46, 147
data access, 331
data overflow, 151
determining levels, 155
banking systems, 158,
162-163
dual levels, 49
feedback loops, 156
levels, 47
overflow storage,
151-154

planning process, 149
raw estimates, 148-149
Granularity Manager, 298,
306
clickstream data, 299
design reviews, 340

H

hardware utilization, 22-23
heterogenous data, 69
historical data, 303

history of data, 33
homogeneous data, 69

|
impact analysis, 289
incorrect data, 76
independently evolving
distributed data
warehouses, 221
indexes, 170
design reviews, 330
efficient usage, 175
processing, 178
indirect data access, 130
indirect use of data, 136
individual data level, 18
information
processing, 1-5
integration, 31
interfaces, 170-171, 283-284
Internet, 297
clickstream data, 298
ebusiness, 307
moving data to
warehouse, 307
ODS, 300
overflow storage, 306
interpretive data, 303
iterative development, 102

L
language interfaces,
173-174
levels
data, architected
environment, 17

detail, 239, 242
granularity, 155
banking systems, 158,
162-163
light summarization
data, 50
limiting operational data
scans, data warehouse
design, 85
living sample
databases, 53-55
loading
archival data, data
warehouse
design, 84
current data, data
warehouse design,
85
issues, design
reviews, 333
ongoing data changes,
data warehouse
design, 85
local data, intersection with
global data, 211-213
local data warehouses,
202-205
data access, 216-219
redundancy with global
data, 214-215
locating data, design
reviews, 337
lock management, 176
logging, design

reviews, 336

M
managing
contextual data, 194
data access, design
reviews, 331
large data amounts,
167-169
locks, 176
meta data, 171-172

L INDEX IR

multiple media
types, 169
volume, 126
master files, 2
media, managing multiple
types, 169
meta data, 113, 189-190
distributed data
warehouses, 232
external data, 269-270
managing, 171-172
storage, design
reviews, 335
methodologies of
migration, 289-290
data driven, 291-293
spiral approach, 292
migration, 289-290
plans, 278-279, 326
to architected
environment, 277
MIS (management
information systems), 4
monitoring
data, 170
data warehouse
environment, 25-28
multidimensional DBMS,
17,182-188
multiple-level data
warehouses, 232-235,
238
multiple profile
records, 127
multiple storage
media, 189
multiple technology
interfaces, 170-171

N
naturally evolving
architecture, 6
changing architecture, 15
inability to move from
data to information,
12-14

lack of data credibility,
6-8
productivity problems,
9-11
near line storage, 269
nonvolatility, 33
normalization, 104-106

o
ODS (operational data
store), 144, 300-301
OLTP (online transaction
processing), 4
operational applications,
ERP, 312-313
operational data, 16
data warehouse design,
82-83
level, 17
operational
development, 294
operational
environment, 128
operational reporting, 74
operational system
changes, 287
operational window, 74-75
outages, design
reviews, 333
overflow storage,
151-154, 306
ownership of data, 334

P

parallel storage/
management of data,
171

partitions, 55-58, 338

PCs, 4

physical data model, 99

physical data
organization, 329

physical model, 92

physical tables, 36-38, 98

planning process,
determining
granularity, 149

primary grouping of data,
DIS, 95
primitive data, 15
process model, 88
processing
capacity requirements,
332
charges, 338
indexes only, 178
volume, 331
productivity problems,
naturally evolving
architecture, 9, 11
profile data, 303
profile records, 124, 127
public summary data, 334
purge criteria, 331
purging data, 72

Q
quick restore, 178

R
raw estimates,
determining
granularity, 148-149
recovery times, design
reviews, 333
redundancy of data, global
and local data
warehouses, 214-215
redundant data, master
files, 2
reengineering, 23-24
reference tables, 113-114,
335
referential integrity, 109
refreshing data
warehouses, 195-196
repetitive processing, 337
reports
costs, 66—68
DSS, 74
operational, 74
secondary, 274
resource estimates, 289

412

response time, DSS, 27

restructuring, design
reviews, 329

Retail personalization
system, 132-133

Retrieving data, EIS,
256-257

ROI (return on
investment), 65

rolling summary data, 59

S
scheduling design
reviews, 322
scope of integration, 92-93
SDLC (systems
development life cycle),
21,294, 322
secondary grouping of
data, DIS, 96
secondary reports, 274
simple contextual
data, 193
simple direct file, 61
SLAs (service-level
agreements), 330
snapshots, 111
components, 123
profile records, 124
reference tables, 114
triggering, 122
software interfaces, 329
sparse indexes, 338
spider web, 235

spiral development
methodologies, 292
stability analysis, 90, 282
standards manuals, 64
star joins, data marts,
137-139
storage
external data, 271
media, 39
unstructured data, 271
stores of unstructured data,
269
strategic issues, 287
structure of data
warehouse, 35
structures, cumulative, 59
subject area midlevel
models, 340
subject areas, 283-284
subject orientation, 31, 36
summary data, EIS, 262
support options for
Internet, 309
system of record, 280, 327

T

technologically
distributed data
warehouses, 220-221

temporary indexes, 338

testing environment, 198

time horizon, 34

time lag issues, 336

time variance, 34

transaction data, 302

triggering snapshots, 122

true archival level of
data, 51

type-of data, DIS, 96-97

typical uses of EIS, 248

u
undisciplined external data,
268
unpredictability of
external data, 268
unstructured data, 265-267
components, 272
data models, 273
frequency of
availability, 268
storage, 271
updates, design
reviews, 336

\")

variable-length data, 176

volume management, 126

volume of data, design
reviews, 328

w
Web, 297
ebusiness, 307
moving data to
warehouse, 307
0ODS, 300
overflow storage, 306
wrinkle of time, 115

	sample.pdf
	sterling.com
	Welcome to Sterling Software

